- •Лекции по эконометрике Учебное пособие Введение
- •1. Предмет и методы эконометрики
- •1.1. Предмет и методы эконометрики
- •1.2. Характеристика взаимосвязей
- •1.3. Основные этапы построения эконометрической модели
- •1.4. Методы отбора факторов
- •1.4.1. Эконометрические переменные
- •1.4.2. Методика отбора факторов для включения в модель
- •1.5. Выбор вида эконометрической модели
- •1.6. Оценка параметров моделей
- •1.7. Примеры эконометрических моделей
- •Контрольные вопросы
- •2. Парный регрессионный анализ
- •2.1. Понятие парной регрессии
- •2.2. Построение уравнения регрессии
- •2.2.1. Постановка задачи
- •2.2.2. Спецификация модели
- •2.3. Оценка параметров линейной парной регрессии
- •2.4. Оценка параметров нелинейных моделей
- •2.5. Качество оценок мнк линейной регрессии. Теорема Гаусса-Маркова
- •2.6. Проверка качества уравнения регрессии. F-критерий Фишера
- •2.7. Коэффициенты корреляции. Оценка тесноты связи
- •2.8. Точность коэффициентов регрессии. Проверка значимости
- •2.9. Точечный и интервальный прогноз по уравнению линейной регрессии
- •2.10. Коэффициент эластичности
- •Контрольные вопросы
- •3. Множественный регрессионный анализ
- •3.1. Понятие множественной регрессии
- •3.2. Отбор факторов при построении множественной регрессии
- •3.2.1. Требования к факторам
- •3.2.2. Мультиколлинеарность
- •3.3. Выбор формы уравнения регрессии
- •3.4. Оценка параметров уравнения линейной множественной регрессии
- •3.5. Качество оценок мнк линейной множественной регрессии. Теорема Гаусса-Маркова
- •3.6. Проверка качества уравнения регрессии. F-критерий Фишера
- •3.7. Точность коэффициентов регрессии. Доверительные интервалы
- •3.8. Частные уравнения регрессии. Частная корреляция
- •3.9. Обобщенный метод наименьших квадратов. Гетероскедастичность
- •3.9.1. Обобщенный метод наименьших квадратов
- •3.9.2. Обобщенный метод наименьших квадратов в случае гетероскедастичности остатков
- •3.10. Проверка остатков регрессии на гетероскедастичность
- •3.11. Построение регрессионных моделей при наличии автокорреляции остатков
- •3.12. Регрессионные модели с переменной структурой. Фиктивные переменные
- •3.12.1. Фиктивные переменные
- •3.12.2. Тест Чоу
- •3.11. Проблемы построения регрессионных моделей
- •Контрольные вопросы
- •4. Системы эконометрических уравнений
- •4.1. Структурная и приведенная формы модели
- •4.2. Оценка параметров структурной формы модели
- •4.3. Косвенный метод наименьших квадратов
- •4.4. Двухшаговый метод наименьших квадратов
- •4.5. Трехшаговый метод наименьших квадратов
- •Контрольные вопросы
- •5. Моделирование одномерных временных рядов и прогнозирование
- •5.1. Составляющие временного ряда
- •5.2. Автокорреляция уровней временного ряда
- •5.3. Моделирование тенденции временного ряда
- •5.3.1. Методы определения наличия тенденции
- •5.3.2. Сглаживание временного ряда по методу скользящей средней
- •5.3.3. Метод аналитического выравнивания
- •5.3.4. Выбор вида тенденции
- •5.3.5. Оценка адекватности и точности модели тенденции
- •5.4. Моделирование периодических колебаний
- •5.4.1. Выделение периодической компоненты по методу скользящей средней
- •5.4.2. Моделирование сезонных колебаний с помощью фиктивных переменных
- •5.4.3 Моделирование сезонных колебаний с помощью гармонического анализа
- •5.5. Прогнозирование уровней временного ряда на основе кривых роста.
- •5.5.1. Метод аналитического выравнивания
- •5.6. Адаптивные модели прогнозирования
- •5.6.1. Понятие адаптивных методов прогнозирования
- •5.6.2. Экспоненциальное сглаживание
- •5.6.3. Использование экспоненциальной средней для краткосрочного прогнозирования
- •5.6.4. Адаптивные полиномиальные модели
- •5.7. Исследование взаимосвязи двух временных рядов
- •5.8. Коинтеграция временных рядов
- •Контрольные вопросы
- •6. Линейные модели стохастических процессов
- •6.1. Стационарные стохастические процессы
- •6.1.1. Основные понятия
- •6.1.2. Параметрические тесты стационарности
- •6.1.3. Непараметрические тесты стационарности
- •6.2. Линейные модели стационарных временных рядов. Процессы arma
- •6.2.1. Модели авторегрессии (ar)
- •6.2.2. Модели скользящего среднего (ma)
- •6.2.3. Модели авторегрессии-скользящего среднего (arma)
- •6.3. Автокорреляционные функции
- •6.3.1. Автокорреляционная функция
- •6.3.2. Частная автокорреляционная функция
- •6.4. Прогнозирование arma-процессов
- •6.4.3. Arma-процессы
- •6.5. Нестационарные интегрируемые процессы
- •6.5.1. Нестационарные стохастические процессы. Нестационарные временные ряды
- •6.5.2. Тесты Дики-Фуллера
- •6.5.3. Модификации теста Дики-Фуллера для случая автокорреляции
- •6.5.4. Метод разностей и интегрируемость
- •6.6. Модели arima
- •6.6.1. Определение и идентификация модели
- •6.6.2. Прогнозирование arima-процессов
- •Контрольные вопросы
- •7. Динамические эконометрические модели
- •7.1. Общая характеристика динамических моделей
- •7.2. Модели с распределенным лагом
- •7.2.1. Оценка параметров модели с распределенным лагом методом Койка
- •7.2.2. Оценка параметров модели с распределенным лагом методом Алмон.
- •7.2.3. Интерпретация параметров
- •7.3. Модели авторегрессии
- •7.3.1. Интерпретация параметров
- •7.3.2. Оценка параметров моделей авторегрессии
- •7.4. Модель частичной корректировки
- •7.5. Модель адаптивных ожиданий
- •Контрольные вопросы
- •8. Информационные технологии эконометрических исследований
- •8.1. Электронные таблицы Excel
- •8.2. Статистический пакет общего назначения statistica
- •8.3. Эконометрические программные пакеты. Matrixer 5.1
- •8.4. Анализ временных рядов в системе эвриста
- •Контрольные вопросы
- •Глоссарий
3.2.2. Мультиколлинеарность
Под коллинеарностью факторов понимается высокая взаимная коррелированность между двумя объясняющими переменными.
Под мультиколлинеарностью факторов понимается высокая взаимная коррелированность между более, чем двумя объясняющими переменными. Следствием коллинеарности или мультиколлинеарности является линейная зависимость между столбцами наблюдений xij в таблице 3.1 или между столбцами матрицы наблюдений X (3.11). В результате, матрица X′X становится плохо обусловленной, что приводит к неустойчивости оценок коэффициентов регрессии, когда незначительные изменения данных наблюдений приводят к значительным изменениям оценок.
Проверка наличия коллинеарности или мультиколлинеарности факторов основывается на анализе матрицы парных корреляций между факторами
(3.3)
Коэффициенты
парной корреляции
между
объясняющими переменными используются
для выявления дублирующих факторов.
Линейная зависимость (коллинеарность)
между двумя объясняющими переменными
xi
и xj
считается установленной, если выполняется
условие
,
сами факторы при этом называются явно
коллинеарными (это правило является
эмпирическим). Один из факторов должен
быть исключен из модели. Предпочтение
при этом отдается тому фактору, который
при достаточно тесной связи с результатом
имеет наименьшую тесноту связи с другими
факторами.
Наряду
с парной коллинеарностью может иметь
место линейная зависимость между боле,
чем двумя переменными. Для оценки
мультиколлинеарности факторов в этом
случае может использоваться величину
определителя
матрицы парных коэффициентов корреляции
между
факторами либо ее минимального
собственного значения.
Чем ближе к нулю определитель (минимальное собственное значение) матрицы межфакторной корреляции, тем сильнее мультиколлинеарность между факторами и тем ненадежнее результаты множественной регрессии.
Для
оценки статистической значимости
мультиколлинеарности факторов может
быть использован тот факт, что величина
имеет приближенное распределение
с
степенями
свободы.
Выдвигается
гипотеза H0
о независимости переменных, т. е.
.
Если фактическое значение χ2
превосходит табличное (критическое)
,
то гипотеза Н0
отклоняется и мультиколлинеарность
считается доказанной.
Для
выявления мультиколлинеарности факторов
можно использовать коэффициенты
множественной детерминации
…
, полученные по уравнениям регрессии,
в которых качестве зависимой переменной
рассматривается один из факторов.
Чем ближе значение коэффициента
детерминации к единице, тем сильнее
проявляется мультиколлинеарность
факторов. Согласно эмпирическому
правилу, при значении коэффициента
множественной детерминации
>
0,6 мультиколлинеарность факторов
считается установленной. Оставляя в
уравнении регрессии факторы с минимальной
величиной коэффициента множественной
детерминации, можно исключить
мультиколлинеарность факторов.
Для преодоления явления линейной зависимости между факторами используются такие способы, как:
исключение одного из коррелирующих факторов;
переход с помощью линейного преобразования к новым некоррелирующим независимым переменным. Например, переход к главным компонентам вектора исходных объясняющих переменных (что позволяет также уменьшить количество рассматриваемых факторов), переход к последовательным разностям во временных рядах
и т. п.;переход к смещенным оценкам, имеющим меньшую дисперсию. В частности, при использовании «ридж-регрессии» применяются смещенные оценки вектора параметров
(п. 3.4), где τ некоторое
положительной число, Ep+1
единичная
матрица порядка p+1.
Такое преобразование увеличивает
определитель матрицы системы нормальных
уравнений и повышает устойчивость
результатов (снижает дисперсию оценок,
которые становятся смещенными).
Другие аспекты вопроса отбора факторов рассмотрены в п. 1.4.
Следует также учитывать ограничение, накладываемое на количество факторов, имеющимся числом наблюдений. Количество наблюдений должно превышать количество факторов более чем в 6-7 раз.
