- •Глава 8. Особенности гидравлического расчета газопроводов
- •8.1. Уравнение неразрывности и уравнение Бернулли для газа
- •8.2. Расчет газопроводов при малых перепадах давления
- •8.3. Расчет газопроводов при больших перепадах давления
- •Глава 9. Основы теории насосов
- •9.1. Краткие сведения о насосах и их классификация
- •9.2. Насосная установка
- •9.3. Рабочие параметры насосов
- •9.3.1. Подача и напор насоса
- •9.3.1.1. Определение напора насоса по показанию приборов
- •9.3.1.2. Определение напора насоса расчетом по элементам насосной установки
- •9.3.2. Мощность насоса. Баланс энергии и кпд насоса
- •9.3.3. Явление кавитации и высота всасывания насоса
- •9.4. Принцип действия и классификация центробежного насоса
- •9.5. Движение жидкости в рабочем колесе центробежного насоса
- •9.6. Основное уравнение центробежных насосов
- •9.7. Анализ основного уравнения центробежных насосов. Влияние формы лопастей на создаваемый напор
- •9.8. Основы теории подобия лопастных насосов
- •9.9. Коэффициент быстроходности
- •9.10. Рабочие характеристики центробежных насосов
- •9.11. Работа насоса на сеть. Рабочая точка
- •9.12. Регулирование работы насоса
- •Дроссельное регулирование (регулирование задвижкой)
- •Регулирование путём изменения числа оборотов рабочего колеса насоса
- •Регулирование путём обточки рабочего колеса
- •9.13. Параллельная работа насосов
- •9.13.1. Параллельная работа центробежных насосов с одинаковыми характеристиками
- •9.13.2. Параллельная работа центробежных насосов с разными характеристиками
- •9.13.3. Параллельная работа центробежных насосов, расположенных на значительном расстоянии друг от друга
- •9.14. Последовательная работа насосов
Глава 9. Основы теории насосов
9.1. Краткие сведения о насосах и их классификация
Насосами называются гидравлические машины, предназначенные для перемещения жидкостей и сообщения им механической энергии.
Насосы являются одной из самых распространенных разновидностей гидравлических машин. Они применяются для наружного водоснабжения (в том числе и противопожарного) населенных пунктов и предприятий, внутреннего водоснабжения жилых, общественных и производственных зданий, для подачи воды на пожаротушение автонасосами, мотопомпами, для подачи воды и огнетушащих составов в установках пожаротушения, в системах смазки, топливоподачи и гидропривода пожарных автомобилей и для многих других целей. Насосы подразделяются на две основные группы: объемные и динамические. Объемными называются насосы, в которых жидкость перемещается путем периодического изменения объёма камеры, попеременно сообщающейся со входом и выходом насоса. Динамическими называются насосы, в которых под воздействием гидродинамических сил перемещается с камерой (незамкнутом объеме) жидкость, постоянно сообщающейся со входом и выходом насоса. К ним относятся струйные и лопастные насосы.
Весьма наглядной является классификация насосов по принципу действия, вне зависимости от вида перемещаемой жидкости (рис. 9.1).
Действие объемных насосов основано на изменении потенциальной энергии перемещаемой жидкости, а струйных и лопастных - на изменении кинетической энергии.
Рис. 9.1. Классификация насосов
Насосы классифицируются не только по принципу действия, но и по конструктивному исполнению, назначению, отраслевому применению, величине подачи и напора и т.д.
Рассмотрим основные схемы насосов.
Поршневой насос (рис. 9.2) в простейшем виде представляет собой расположенный в цилиндрическом кожухе поршень, при движении которого в одну сторону жидкость через всасывающий клапан поступает в рабочую камеру, а при движении в другую сжимается и затем выталкивается через нагнетательный клапан.
Положительными качествами поршневых насосов являются: высокий КПД, возможность получения больших давлений, независимость подачи от создаваемого давления, запуск без предварительной заливки всасывающих линий (самовсасывающие). Недостатками - громоздкость и затруднитель-ность непосредственного соединения с электродвигателем, наличие клапанов, неравномерность подачи, вызывающая вибрацию, сложность регулировки. Скорость поршня таких насосов ограничена действием инерционных сил.
Рис. 9.2. Поршневой насос
К насосам возвратно-поступательного действия, кроме поршневых относятся также мембранные (диафрагменные) насосы (рис. 9.3), которые нашли распространение в системах топливоподачи автомобилей (в том числе и пожарных).
Рис. 9.3. Мембранный насос
К роторным насосам относятся пластинчатые, зубчатые (шестеренные), винтовые, червячные и др. Они представляют собой объемные насосы с вращающимся ротором без всасывающих и напорных клапанов и вследствие отсутствия возвратно-поступательного движения их можно непосредственно соединять с высокооборотными электродвигателями.
Типичным представителем роторных насосов является пластинчатый насос (рис. 9.4).
В простейшем виде он представляет собой эксцентрично расположенный в цилиндрическом корпусе 2 ротор 1, в пазах которого находятся пластины 3, отжимаемые от центра к периферии действием центробежной силы. При вращении цилиндра 1 пластины 3 производят всасывание жидкости через приемный патрубок 4, сжатие ее и нагнетание через напорный патрубок 5. Насос является реверсивным: при изменении направления вращения его вала изменяется направление движения жидкости в трубопроводах, присоединенных к насосу.
Рис. 9.4. Пластинчатый насос роторного типа
Зубчатый насос состоит из пары сцепленных между собой шестерен, расположенных в открытом с двух сторон кожухе (рис. 9.5), с минимальным зазором между зубьями и кожухом. Зубья при вращении захватывают жидкость и переносят её со стороны всасывания в сторону нагнетания. Эти насосы получили распространение в системах смазки при перекачки вязких жидкостей (масел).
Струйные насосы используются в пожарной охране для заполнения всасывающих линий пожарных насосов, для подачи воды на пожар при расположении насоса более 7 м над уровнем воды, для уборки воды из помещений после тушения пожара. Принципиальная схема насоса струйного типа, его работа и основы расчета приведены в гл. 3.
В противопожарном водоснабжении наиболее распространены центробежные насосы. В дальнейшем мы подробно рассмотрим устройство и принцип действия центробежных насосов (рис. 9.12), их классификацию.
Рис. 9.5. Зубчатый насос
Отметим только, что их широкое распространение объясняется высоким КПД, компактностью и сравнительной простотой в конструктивном отношении, ремонтопригодностью и удобством эксплуатации. Их можно непосредственно соединять с электродвигателями, легко регулировать, они имеют плавную, без толчков, подачу.
У осевых насосов (рис. 9.6) лопасти 1 закреплены на втулке 2 под некоторым углом к плоскости, нормальной к оси. При вращении лопасти взаимодействуют с потоком жидкости, сообщая ей энергию и перемещая её вдоль оси насоса.
Рис. 9.6. Осевой насос
На рис. 9.7 дана схема вихревого насоса. Жидкость поступает через патрубок 1 на периферию рабочего колеса с лопастями 2 и, получая от них энергию при движении по концентрическому каналу 3, отводится в напорный патрубок 4.
Характерной особенностью вихревого насоса являются подвод и отвод жидкости на периферии рабочего колеса по касательной к нему. Недостаток вихревых насосов - невысокий КПД. Осевые и вихревые насосы обладают реверсивностью, т.е. способностью изменять направление подачи при изменении направления вращения.
Рис. 9.7. Вихревой лопастной насос
