Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
БИОЭЛЕКТРИЧЕСКИЕ ПОТЕНЦИАЛЫ.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
608.59 Кб
Скачать

Южно-Казахстанская государственная фармацевтическая академия

Кафедра медицинской биофизики, информатики и математики

На тему: Биоэлектрические потенциалы.

Шымкент, 2015.

План

  • Введение

  • Потенциал покоя.

  • Стационарный потенциал Гольдмана-Ходжкина-Катца.

  • Потенциал действия и его распространение.

  • Сравнение потенциала покоя и потенциала действия

  • Основные понятия и формулы.

  • Основные классы методов исследования биоэлектрических потенциалов

  • Вывод

Введение

В живых организмах происходят разнообразные электрические процессы. Функционирование живых тканей сопровождается электрическими явлениями. Генерация и распространение электрических потенциалов - важнейшее физическое явление в живых клетках и тканях.

Биоэлектрический потенциал - разность потенциалов между двумя точками живой ткани, определяющая ее биоэлектрическую активность. Биопотенциал имеет мембранную природу.

Потенциал покоя

В нормально функционирующей клетке поддерживается наиболее благоприятный состав ионов. Различие в их концентрациях по разные стороны мембраны приводит к появлению разности потенциалов.

Потенциал покоя - разность потенциалов между цитоплазмой и окружающей средой в нормально функционирующей клетке.

В 1902 г. Бернштейн предположил, что потенциал покоя обусловлен проницаемостью мембраны для ионов К+. В состоянии покоя плотность потока ионов равна нулю, и уравнение (12.5) принимает следующий вид:

Потенциал, определяемый формулой (12.7), называют равновесным потенциалом. Расчеты, выполненные по этой формуле, существенно расходятся с экспериментальными данными при низких концентрациях К+. Это указывает на то, что «калиевая» теория потенциала несовершенна.

Стационарный потенциал Гольдмана-Ходжкина-Катца

Причина отклонения равновесного потенциала от опытных данных заключается в проницаемости мембраны и для других ионов, которые вносят свой вклад в образование мембранного потенциала. Основной вклад в суммарный поток зарядов, а следовательно, в создание и поддержание потенциала покоя, помимо К+, вносят ионы Na+, Cl-. Суммарная плотность потока этих ионов с учетом их знаков равна

Знак «-» перед JCl- указывает на отрицательный заряд.

В стационарном состоянии (когда параметры системы не изменяются) суммарная плотность потока равна нулю, т.е. число различных ионов, проходящих в единицу времени через мембрану внутрь клетки, равно числу ионов, выходящих из клетки через мембрану: J = 0

Здесь, во избежание сложностей с индексацией, для обозначения концентрации вместо буквы с использованы квадратные скобки: []i и[]0 - концентрации соответствующих ионов внутри и вне клетки.

Очевидно, что формула для равновесного потенциала (12.7) получается из формулы стационарного потенциала (12.9) при РNa = 0 и РС1.= 0 Таким образом, уравнение Гольдмана-Ходжкина-Катца существенно уточняет теорию Бернштейна.

Большая часть сведений о нервных клетках получена при изучении аксона кальмара, достигающего почти миллиметровой толщины. Его изолированные нервные волокна довольно долго сохраняют способность передавать нервные импульсы. Рассчитаем стационарный мембранный потенциал для клеток аксона кальмара. При вычислении по формуле (12.9) вместо самих коэффициентов проницаемости можно использовать отношение между ними, которое для аксона выражается следующими числами:

Значения концентраций приведены ниже.

Подставив эти значения в формулу (12.9) при Т = 303 К (30 °С), получим:

Что достаточно хорошо согласуется со значением, определенным опытным путем.