- •1. Основные представления о моделировании. Базовые понятия и термины.
- •2.Основные типы моделей. Их сравнительная оценка и области применения. Современные задачи развития математического моделирования в экологии.
- •3. Статистические модели. Нормальное распределение. Выборка и генеральная совокупность. Основная область применения в экологии и почвовед.
- •4. Иммитационные модели. Их задачи, возможности и ограничения. Осноблпримен.
- •5. Графовые модели. Их задачи, возможности и ограничения. Основная область применения в экологии и почвоведении.
- •6.Табличные модели. Их задачи, возможности и ограничения. Основная область применения в экологии и почвоведении.
- •7. Регрессионные модели. Их задачи, возможности и ограничения. Основная область применения в экологии и почвоведении.
- •8. Основные понятия регрессионного анализа. Типы регрессии. Их прикладная интерпретация.
- •9. Метод наименьших квадратов. Области его применения.
- •10. Оценка качества регрессионной модели. Способы улучшения качества регрессионной модели.
- •11. Множественная регрессия. Ее преимущества и недостатки. Основная область применения в экологии и почвоведении.
- •12. Пространственные модели. Основная область применения в экологии и почвоведении.
- •13. Корреляция рядов динамики. Основная область применения в экологии и почвоведении.
- •14. Оценка точности прогноза. Особенности поискового прогнозирования в экологии и почвоведении.
- •15. Геостатистика. Пространственно координированные данные. Типы данных в гис.
- •16. Модели представления пространственных данных. Растровый и векторный подход.
- •17. Интерполяция пространственных данных. Особенности применения в экологии и почвоведении.
- •18. Классификация пространственных данных. Особенности их применения в экологии и почвоведении.
- •19. Геоинформационные математические модели. Основная область применения в экологии, почвоведении, агрохимии
- •20. Сравнительный анализ растровых и векторных гис. Их преимущества и недостатки. Основная область применения в экологии и почвоведении.
- •21. Как можно создавать новые тематические слои.
- •22. Моделирование пригодности и рисков в гис.
- •23. Анализ рельефа в гис. Цифровые карты рельефа.
- •24. Алгебра карт. Применение алгебраических и логических операций при создании новых слоев гис.
- •25. Генерализация пространственных данных. Особенности генерализации пространственных данных в почвоведении и экологии.
- •26. Имитационное моделирование. Имитация природных процессов.
- •32 .Использование методов математического моделирования для решения оптимизационных задач.
- •33 . Пример использования регрессионной модели в экологии или почвоведении
- •34. Использование метода усреднения ряда динамики скользящим окном
- •35. Особенности выбора наилучшего тренда ряда динамики
- •36. Процедура и задачи оценки наличия автокорреляции в ряду динамики.
- •37. Особенности построения уравнения авторегрессии
- •38. Процедура и задачи оценки автокорреляции между 2 рядами данных
- •39. Расчет точности прогноза по коэффициенту расхождения
- •40. Интерполяция данных по методу обычного кригинга
- •42. Способ генерализации карты методом скользящего окна с помощью гис.
- •44. Способ анализа зависимости потенциальной продуктивности от глубины грунтовых вод.И 45. Способ анализа зависимости потенциальной продуктивности от начальной влажности почв.
- •46. Способ анализа зависимости потенциальной продуктивности от типа почв.
- •47. Основные особенности анализа и моделирования статистических и динамических систем.
- •48. Методологические особенности экологического математического моделирования.
- •49. Основные проблемы и принципиальные ограничения использования методов математического моделирования в почвоведении.
- •50. Для решения каких прикладных задач можно использовать экологические геоинформационные модели и системы?
- •51. Какие методы математического моделирования используются в классификации почв и экосистем?
- •52. Как проводится картографическое моделирование воздействия источников загрязнения атмосферы на ситуационных и генеральных планах объектов овос (оценки воздействия на окружающую среду)?
- •2. Роль и место гис в природоохранных мероприятия
- •54. Какими методами математического моделирования определяют экологически значимые факторы?
11. Множественная регрессия. Ее преимущества и недостатки. Основная область применения в экологии и почвоведении.
Общее назначение множественной регрессии (этот термин был впервые использован в работе Пирсона - Pearson, 1908) состоит в анализе связи между несколькими независимыми переменными (называемыми также регрессорами или предикторами) и зависимой переменной. Специалисты по кадрам обычно используют процедуры множественной регрессии для определения вознаграждения адекватного выполненной работе.
В общественных и естественных науках процедуры множественной регрессии чрезвычайно широко используются в исследованиях. В общем, множественная регрессия позволяет исследователю задать вопрос (и, вероятно, получить ответ) о том, "что является лучшим предиктором для...". Например, исследователь в области образования мог бы пожелать узнать, какие факторы являются лучшими предикторами успешной учебы в средней школе. А психолога мог быть заинтересовать вопрос, какие индивидуальные качества позволяют лучше предсказать степень социальной адаптации индивида. Социологи, вероятно, хотели бы найти те социальные индикаторы, которые лучше других предсказывают результат адаптации новой иммигрантской группы и степень ее слияния с обществом. Заметим, что термин "множественная" указывает на наличие нескольких предикторов или регрессоров, которые используются в модели.
М. p. — метод многомерного анализа, посредством к-рого зависимая переменная (или критерий) Y связывается с совокупностью независимых переменных (или предикторов) X посредством линейного уравнения: Y' = а + b1Х1 + b2Х2 + ... + bkXk.
Коэффициенты регрессии или, по-другому, весовые коэффициенты b обычно определяют методом наименьших квадратов, минимизируя сумму квадратов отклонений фактических значений зависимой переменной от соотв. предсказанных значений.
При «пошаговом» («stepwise») подходе переменные добавляются (или удаляются) по одному за раз к (из) совокупности независимых переменных до тех пор, пока изменения не становятся статистически незначимыми (или значимыми). Кроме того, совокупность переменных может добавляться (или удаляться) в целях оценки их вклада в множественную корреляцию; в этом случае для определения статистической значимости их эффекта применяется F-критерий. Нелинейные связи можно оценить путем включения в правую часть уравнения регрессии членов более высокого порядка и/или мультипликативных членов.
Веса или коэффициенты регрессии определяются с наибольшей надежностью в тех случаях, когда независимые переменные являются относительно некоррелированными. Наличие высоких интеркорреляций между нек-рыми из них называется «мультиколлинеарностью» и приводит к получению коэффициентов регрессии, величина к-рых может заметно и нерегулярно изменяться от выборки к выборке. М. р. широко применяется для решения следующих задач:
1. Получение наилучшего линейного уравнения прогноза.
2. Контроль за смешиванием переменных (факторов).
3. Оценка вклада определенной совокупности переменных.
4. Объяснение сложного на вид многомерного комплекса взаимосвязей.
