- •1. Основные представления о моделировании. Базовые понятия и термины.
- •2.Основные типы моделей. Их сравнительная оценка и области применения. Современные задачи развития математического моделирования в экологии.
- •3. Статистические модели. Нормальное распределение. Выборка и генеральная совокупность. Основная область применения в экологии и почвовед.
- •4. Иммитационные модели. Их задачи, возможности и ограничения. Осноблпримен.
- •5. Графовые модели. Их задачи, возможности и ограничения. Основная область применения в экологии и почвоведении.
- •6.Табличные модели. Их задачи, возможности и ограничения. Основная область применения в экологии и почвоведении.
- •7. Регрессионные модели. Их задачи, возможности и ограничения. Основная область применения в экологии и почвоведении.
- •8. Основные понятия регрессионного анализа. Типы регрессии. Их прикладная интерпретация.
- •9. Метод наименьших квадратов. Области его применения.
- •10. Оценка качества регрессионной модели. Способы улучшения качества регрессионной модели.
- •11. Множественная регрессия. Ее преимущества и недостатки. Основная область применения в экологии и почвоведении.
- •12. Пространственные модели. Основная область применения в экологии и почвоведении.
- •13. Корреляция рядов динамики. Основная область применения в экологии и почвоведении.
- •14. Оценка точности прогноза. Особенности поискового прогнозирования в экологии и почвоведении.
- •15. Геостатистика. Пространственно координированные данные. Типы данных в гис.
- •16. Модели представления пространственных данных. Растровый и векторный подход.
- •17. Интерполяция пространственных данных. Особенности применения в экологии и почвоведении.
- •18. Классификация пространственных данных. Особенности их применения в экологии и почвоведении.
- •19. Геоинформационные математические модели. Основная область применения в экологии, почвоведении, агрохимии
- •20. Сравнительный анализ растровых и векторных гис. Их преимущества и недостатки. Основная область применения в экологии и почвоведении.
- •21. Как можно создавать новые тематические слои.
- •22. Моделирование пригодности и рисков в гис.
- •23. Анализ рельефа в гис. Цифровые карты рельефа.
- •24. Алгебра карт. Применение алгебраических и логических операций при создании новых слоев гис.
- •25. Генерализация пространственных данных. Особенности генерализации пространственных данных в почвоведении и экологии.
- •26. Имитационное моделирование. Имитация природных процессов.
- •32 .Использование методов математического моделирования для решения оптимизационных задач.
- •33 . Пример использования регрессионной модели в экологии или почвоведении
- •34. Использование метода усреднения ряда динамики скользящим окном
- •35. Особенности выбора наилучшего тренда ряда динамики
- •36. Процедура и задачи оценки наличия автокорреляции в ряду динамики.
- •37. Особенности построения уравнения авторегрессии
- •38. Процедура и задачи оценки автокорреляции между 2 рядами данных
- •39. Расчет точности прогноза по коэффициенту расхождения
- •40. Интерполяция данных по методу обычного кригинга
- •42. Способ генерализации карты методом скользящего окна с помощью гис.
- •44. Способ анализа зависимости потенциальной продуктивности от глубины грунтовых вод.И 45. Способ анализа зависимости потенциальной продуктивности от начальной влажности почв.
- •46. Способ анализа зависимости потенциальной продуктивности от типа почв.
- •47. Основные особенности анализа и моделирования статистических и динамических систем.
- •48. Методологические особенности экологического математического моделирования.
- •49. Основные проблемы и принципиальные ограничения использования методов математического моделирования в почвоведении.
- •50. Для решения каких прикладных задач можно использовать экологические геоинформационные модели и системы?
- •51. Какие методы математического моделирования используются в классификации почв и экосистем?
- •52. Как проводится картографическое моделирование воздействия источников загрязнения атмосферы на ситуационных и генеральных планах объектов овос (оценки воздействия на окружающую среду)?
- •2. Роль и место гис в природоохранных мероприятия
- •54. Какими методами математического моделирования определяют экологически значимые факторы?
47. Основные особенности анализа и моделирования статистических и динамических систем.
Определим метод имитационного моделирования в самом общем виде как экспериментальный метод исследования реальной системы по ее имитационной модели, который сочетает особенности экспериментального подхода и специфические условия использования вычислительной техники [1]. В этом определении подчеркивается, что имитационное моделирование является машинным методом моделирования, собственно без ЭВМ никогда не существовало, и только развитие информационных технологий привело к становлению этого вида компьютерного моделирования. В этом определении также акцентируется внимание на экспериментальной природе имитации, применяется имитационный метод исследования (осуществляется экспериментирование с моделью) [2]. Действительно, в имитационном моделировании важную роль играет не только проведение, но и планирование эксперимента на модели. Однако это определение не проясняет, что собой представляет сама имитационная модель. В чем же состоит сущность имитационного моделирования. В процессе имитационного моделирования можно выделить четыре основных элемента: 1)реальная система; 2)логико-математическая модель моделируемого объекта; 3)имитационная (машинная) модель; 4)ЭВМ, на которой осуществляется имитация – направленный вычислительный эксперимент. Изучает реальную систему, разрабатывает логико-математическую модель реальной системы. Имитационный характер исследования предполагает наличие логико – или логико-математических моделей, описываемых изучаемый процесс. Особенностью имитационного моделирования является то, что имитационная модель позволяет воспроизводить моделируемые объекты: с сохранением их логической структуры; с сохранением поведенческих свойств (последовательности чередования во времени событий, происходящих в системе), т.е. динамики взаимодействий [1]. При имитационном моделировании структура моделируемой системы адекватно отображается в модели, а процессы ее функционирования проигрываются (имитируются) на построенной модели. Поэтому построение имитационной модели заключается в описании структуры и процессов функционирования моделируемого объекта или системы. В описании имитационной модели выделяют две составляющие: -статическое описание системы, которое по-существу является описанием ее структуры. При разработке имитационной модели необходимо выполнять структурный анализ моделируемых процессов. -динамическое описание системы, или описание динамики взаимодействий ее элементов. При его составлении фактически требуется построение функциональной модели моделируемых динамических процессов. Идея метода, с точки зрения его программной реализации, состояла в следующем. Что если элементам системы поставить в соответствие некоторые программные компоненты, а состояния этих элементов описывать с помощью переменных состояния [1]. Элементы, по определению, взаимодействуют (или обмениваются информацией), – значит, может быть реализован алгоритм функционирования отдельных элементов – моделирующий алгоритм. Кроме того, элементы существуют во времени – значит надо задать алгоритм изменение переменных состояний. Динамика в имитационных моделях реализуется с помощью механизма продвижения модельного времени. Отличительной особенностью метода имитационного моделирования является возможность описания и воспроизведения взаимодействия между различными элементами системы. Таким образом, чтобы составить имитационную модель, необходимо: представить реальную систему (процесс), как совокупность взаимодействующих элементов; алгоритмически описать функционирование отдельных элементов; описать процесс взаимодействия различных элементов между собой и с внешней средой. Ключевым моментом в имитационном моделировании является выделение и описание состояний системы. Система характеризуется набором переменных состояний, каждая комбинация которых описывает конкретное состояние. Следовательно, путем изменения значений этих переменных можно имитировать переход системы из одного состояния в другое. Таким образом, имитационное моделирование – это представление динамического поведения системы посредством продвижения ее от одного состояния к другому в соответствии с хорошо определенными операционными правилами. Эти изменения состояний могут происходить либо непрерывно, либо в дискретные моменты времени [2]. Имитационное моделирование – есть динамическое отражение изменений состояния системы с течением времени. Таким образом, при имитационном моделировании логическая структура реальной системы отображается в модели, а также имитируется динамика взаимодействий подсистем в моделируемой системе. Это важный, но не единственный признак имитационной модели, исторически предопределивший, не совсем удачное, название методу, который серьезный исследователи чаще называют “системным моделированием”.
Статическое моделирование служит для описания состояния объекта в
фиксированный момент времени, а динамическое — для исследования объекта во
времени. При этом оперируют аналоговыми (непрерывными), дискретными и
смешанными моделями.
Статическое моделирование служит для описания поведения объекта в какой-либо момент времени, а динамическое моделирование отражает поведение объекта во времени.
Матричные модели. К ним относятся:а) статические модели межотраслевого баланса. Предназначены для проведения прогнозных макроэкономических расчетов на краткосрочный период (год, квартал, месяц).б) динамические модели межотраслевого баланса. Предназначены для расчетов развития экономики на долгосрочную перспективу, отражают процесс воспроизводства в динамике, обеспечивают увязку прогноза производства продукции (услуг) с инвестициями [11,c.22].Большинство экономико-математических моделей являются статическими. Эта точка зрения настолько укоренилась в сознании большинства экономистов, что практически всегда модель считается статической, а если это не так, то только тогда указывается, что модель является динамической. В самом деле, к статическим моделям естественно приводят самые разнообразные задачи экономического анализа и планирования, которые допускают постановку проблемы при жестко фиксированной структуре моделируемой системы. Поскольку статические модели в формализованном виде не содержат фактора времени, они всегда проще, чем динамические модели тех же экономических систем, с той или иной степенью полноты учитывающих этот фактор. Поэтому для экономико-математического моделирования типична ситуация, когда сначала разрабатываются статические модели, а затем они усложняются введением фактора времени, т. е. преобразуются в динамические. В частности, статическими первоначально были модели межотраслевого баланса, разнообразные модели, сводимые к транспортной задаче и распределительной задаче линейного программирования, к задачам о потоках в сетях и т. д. Впоследствии для всех этих моделей были разработаны динамические аналоги и обобщения. Однако усложнение далеко не всегда оказывается продуктивным даже в тех случаях, когда динамический аспект моделируемой системы небезразличен для цели моделирования.Соответственно, при формулировке статической экономико-математической модели предполагается, что все зависимостиотносятся к одному моменту времени, а моделируемая система неизменна во времени. При этом полностью игнорируются возможные (а подчас даже неизбежные) изменения, поскольку их учет не требуется для достижения цели моделирования. Кроме того, предполагается, что все интересующие процессы, происходящие в системе, не требуют при своем описании развертывания во времени, т. к. могут быть с достаточной степенью точности охарактеризованы независящими от времени величинами, как известными, так и неизвестными. Поэтому в статической модели время не вводится явно. Статические модели характеризуют моделируемую систему на какой-либо фиксированный момент времени. Такой момент может представлять целый временной интервал, как правило, в качестве его конечной, средней или начальной точки, в течение которого система предполагается неизменной.Под статической экономической системой понимается такая система, координаты которой на изучаемом отрезке времени могут рассматриваться как постоянные.
