- •1. Основные представления о моделировании. Базовые понятия и термины.
- •2.Основные типы моделей. Их сравнительная оценка и области применения. Современные задачи развития математического моделирования в экологии.
- •3. Статистические модели. Нормальное распределение. Выборка и генеральная совокупность. Основная область применения в экологии и почвовед.
- •4. Иммитационные модели. Их задачи, возможности и ограничения. Осноблпримен.
- •5. Графовые модели. Их задачи, возможности и ограничения. Основная область применения в экологии и почвоведении.
- •6.Табличные модели. Их задачи, возможности и ограничения. Основная область применения в экологии и почвоведении.
- •7. Регрессионные модели. Их задачи, возможности и ограничения. Основная область применения в экологии и почвоведении.
- •8. Основные понятия регрессионного анализа. Типы регрессии. Их прикладная интерпретация.
- •9. Метод наименьших квадратов. Области его применения.
- •10. Оценка качества регрессионной модели. Способы улучшения качества регрессионной модели.
- •11. Множественная регрессия. Ее преимущества и недостатки. Основная область применения в экологии и почвоведении.
- •12. Пространственные модели. Основная область применения в экологии и почвоведении.
- •13. Корреляция рядов динамики. Основная область применения в экологии и почвоведении.
- •14. Оценка точности прогноза. Особенности поискового прогнозирования в экологии и почвоведении.
- •15. Геостатистика. Пространственно координированные данные. Типы данных в гис.
- •16. Модели представления пространственных данных. Растровый и векторный подход.
- •17. Интерполяция пространственных данных. Особенности применения в экологии и почвоведении.
- •18. Классификация пространственных данных. Особенности их применения в экологии и почвоведении.
- •19. Геоинформационные математические модели. Основная область применения в экологии, почвоведении, агрохимии
- •20. Сравнительный анализ растровых и векторных гис. Их преимущества и недостатки. Основная область применения в экологии и почвоведении.
- •21. Как можно создавать новые тематические слои.
- •22. Моделирование пригодности и рисков в гис.
- •23. Анализ рельефа в гис. Цифровые карты рельефа.
- •24. Алгебра карт. Применение алгебраических и логических операций при создании новых слоев гис.
- •25. Генерализация пространственных данных. Особенности генерализации пространственных данных в почвоведении и экологии.
- •26. Имитационное моделирование. Имитация природных процессов.
- •32 .Использование методов математического моделирования для решения оптимизационных задач.
- •33 . Пример использования регрессионной модели в экологии или почвоведении
- •34. Использование метода усреднения ряда динамики скользящим окном
- •35. Особенности выбора наилучшего тренда ряда динамики
- •36. Процедура и задачи оценки наличия автокорреляции в ряду динамики.
- •37. Особенности построения уравнения авторегрессии
- •38. Процедура и задачи оценки автокорреляции между 2 рядами данных
- •39. Расчет точности прогноза по коэффициенту расхождения
- •40. Интерполяция данных по методу обычного кригинга
- •42. Способ генерализации карты методом скользящего окна с помощью гис.
- •44. Способ анализа зависимости потенциальной продуктивности от глубины грунтовых вод.И 45. Способ анализа зависимости потенциальной продуктивности от начальной влажности почв.
- •46. Способ анализа зависимости потенциальной продуктивности от типа почв.
- •47. Основные особенности анализа и моделирования статистических и динамических систем.
- •48. Методологические особенности экологического математического моделирования.
- •49. Основные проблемы и принципиальные ограничения использования методов математического моделирования в почвоведении.
- •50. Для решения каких прикладных задач можно использовать экологические геоинформационные модели и системы?
- •51. Какие методы математического моделирования используются в классификации почв и экосистем?
- •52. Как проводится картографическое моделирование воздействия источников загрязнения атмосферы на ситуационных и генеральных планах объектов овос (оценки воздействия на окружающую среду)?
- •2. Роль и место гис в природоохранных мероприятия
- •54. Какими методами математического моделирования определяют экологически значимые факторы?
44. Способ анализа зависимости потенциальной продуктивности от глубины грунтовых вод.И 45. Способ анализа зависимости потенциальной продуктивности от начальной влажности почв.
При разработке различных систем автоматизированного прогнозирования урожайности, при расчете максимальных урожаев и их агротехническом, экономическом, экологическом обеспечении важное место занимают модели роста и развития растений. Растение - сложная стохастическая система, содержащая множество параметров состояния, количественные изменения которых ведут к количественному и качественному изменениям всей системы в целом. Математическая модель роста и развития растений должна описывать основные процессы, на которые влияет управляющее воздействие. В первом приближении (достаточном для моделирования ростовых функций) система “растение - среда обитания” может быть интерпретирована как динамическая система с распределенными параметрами, а математические модели системы могут быть описаны с помощью дифференциальных уравнений. При построении таких моделей необходимо принимать во внимание те значительные трудности, которые возникают при идентификации моделей, а также невозможность точно и полно описать такую сложную динамическую систему как “растение - среда обитания”. В связи с этим целесообразно создание достаточно простых моделей процесса роста (банка таких моделей), с небольшим числом неизвестных параметров – параметров агроэкосистемы, без которых растение не может существовать, не может функционировать как система. При таком подходе выигрыш может быть достигнут за счет использования более тонких и точных математических методов идентификации и прогноза, более интеллектуального, эффективного и гибкого математического и программного обеспечения, эффективных критериев адекватности и устойчивости моделей, а также технологии моделирования.
С этих позиций рассматривается модель расчета влажности почвы с учетом накапливаемой биомассы и прогнозирования урожайности сельхозкультур по заданной (экологически обоснованной) влагообеспеченности корнеобитаемого слоя почвы и соответствующая компьютерная среда, позволяющая решать задачи прогноза влажности почвы и урожайности (биомассы) сельхозкультур на заданный момент времени с развитыми интерфейсными средствами, рассчитанными на неподготовленного пользователя - агронома, эколога.
Описание математической модели и процедуры ее идентификации
Для определения динамики накопления биомассы может быть использован банк различных моделей, из которых подбирается по тем или иным критериям адекватности наилучшая модель (по результатам идентификации).
Для нахождения влажности почвы нам необходимо идентифицировать переменные. Эта задача достаточно сложна из-за сложности и дороговизны проведения экспериментальных исследований (мониторинга). Мы продемонстрируем имитационную процедуру её решения для случая постоянных параметров модели ; случай кусочно-постоянных параметров - аналогичен и влияет только на размерность задачи, а случай произвольных функции сводим к проблеме аппроксимации их некоторой системой базисных функций.
Одним из наиболее важных условий увеличения урожайности сельскохозяйственных культур является достижение такого уровня фактора роста, как влажность почвы, который позволит получить оптимальный режим орошения и, как следствие, высокий урожай. Эта задача не может быть решена без математического, в частности, имитационного моделирования отклика системы “растение” на управляющее воздействие “влажность”. Для этого, наряду с вышеописанной моделью для прогнозирования урожая использованы модели и алгоритмы работ
Описание компьютерной модели и вычислительных экспериментов
Для реализации компьютерных имитационных процедур разработана и методика проведения экспериментов и программная система на языке Pascal в среде Delphi 2.0 Windows 95 имеющая диалоговый оконный интерфейс из 5 страниц: “Эксперимент”, “С/х культура”, “Регион”, “Рабочая” и “Результат”.
1)Страница “С/х культура” - для ввода входной информации по культуре.
2) Страница “Регион” - для ввода информации по региону эксперимента.
3)Страница “Эксперимент” выглядит следующим образом.
Данная страница - для ввода исходных данных по эксперименту (культуры и даты снятия урожая, типа почвы, фаз вегетации и др.). После её заполнения, производится расчет влажности почвы и прогноз урожайности культуры. После этого раскрывается страница “Результат” вида:
4)Страница “Рабочая” - для визуализации (анализа) расчётных величин.
Были проведены численные эксперименты с использованием общедоступных данных [11] (это можно отнести к достоинствам системы). Данные по температуре воздуха, величине осадков, уровню грунтовых вод и относительной влажности воздуха представлены с интервалом в 10-15 суток за весь период вегетационного цикла растения. Программа отображает результаты расчета в таблице и на графике. График оптимального развития культуры имеет “ступенчатый” характер ввиду того, что экспериментально полученные значения xmax(t) за прошлый год вводятся по фазам вегетации, а для межфазных периодов программно рассчитываются. Результаты расчётов приводятся только в графиках.
