Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Modelirovanie.doc
Скачиваний:
2
Добавлен:
01.07.2025
Размер:
566.78 Кб
Скачать

37. Особенности построения уравнения авторегрессии

Модель авторегрессии

В авторегрессионной модели порядка p любое текущее значение процесса yt выражается

как конечная линейная совокупность p предыдущих значений процесса и импульса at (уровни ряда регрессируют на своих предыдущих значениях):

дополнительных предположениях стационарный процесс удовлетворяет уравнению авторегрессии бесконечного порядка, с достаточно быстро убывающими коэффициентами. Модель АР(1) при положительном коэффициенте автокорреляции представляет собой колебательный процесс с преобладанием длинных волн: в спектре подобного процесса присутствует подъем в области низких частот. Если коэффициент автокорреляции отрицателен, процесс является сильно осциллирующим, т.е. в спектре имеются пики в области высоких частот.

Модель АР(2) ведет себя по-разному в зависимости от того, являются ли корни соответствующего полинома действительными или мнимыми. В случае мнимых корней мы получим колебательный процесс с ярко выраженным периодом, а спектр модели будет содержит пик на соответствующей частоте. Неплохой пример подобного процесса – это колебания маятника под действием случайных возмущений. В случае действительныхкорнейпроцесс АР(2) похож на процесс АР(1).

38. Процедура и задачи оценки автокорреляции между 2 рядами данных

Корреляционная зависимость между уровнями взаимосвязанных рядов динамики

При изучении развития явления во времени часто возникает необходимость оценить степень взаимосвязи в изменениях уровней 2-х или более рядов динамики различного содержания, но связанных между собой. Эта задача решается методами коррелирования:

уровней ряда динамики

отклонений фактических уровней от тренда

последовательных разностей

Коррелирование уровней динамических рядов с применением парного коэффициента корреляции правильно показывает тесноту связи лишь в том случае, если в каждом из них отсутствует автокорреляция. Наличие зависимости между последующими и предшествую­щими уровнями динамического ряда в статистической литерату­ре называют автокорреляцией.

Поэтому прежде, чем коррелировать ряды динамики по уровням, необходимо проверить каждый из рядов на наличие или отсутствие в них автокорреляции. Применение методов классической теории корреляции в ди­намических рядах связано с некоторыми особенностями. Преж­де всего, это наличие для большинства динамических рядов зави­симости последующих уровней от предыдущих.

Коэффициент автокорреляции вычисляется по непосред­ственным данным рядов динамики, когда фактические уровни од­ного ряда рассматриваются как значения факторного признака, а уровни этого же ряда со сдвигом на один период, принимаются в качестве результативного признака (этот сдвиг называется лагом). Коэффициент автокорреляции рассчитывается на основе фор­мулы коэффициента корреляции для парной зависимости.

Формула для расчета коэффициента автокорреляции уровней ряда1-го порядка:

Формула для расчета коэффициента автокорреляции уровней ряда2-го порядка:

Для суждения о наличии или отсутствии автокорреляции в исследуемом ряду, фактическое значение коэффициента автокорреляции сопоставляют с табличным для 5% или 1% уровня значимости (т. е.  по величине вероятности допустить ошибку при принятии гипотезы о независимости уровней ряда). Если расчетное значение меньше табличного, то гипотеза об отсутствии автокорреляции принимается и, наоборот, в противном случае, отвергается.

Последовательность коэффициентов автокорреляции 1, 2 и т.д. порядков называют автокорреляционной функцией временного ряда. График зависимости значений коэффициентов автокорреляции от величины лага (порядка коэффициента автокорреляции) называют коррелограммой.

Анализ автокорреляционной функции и коррелограммы позволяет выявить структуру ряда, т. е. определить присутствие в ряде той или иной компоненты. Так, если наиболее высоким оказался коэффициент автокорреляции первого порядка, то исследуемый ряд содержит только тенденцию. Если наиболее высоким оказался коэффициент автокорреляции порядка m, то ряд содержит циклические колебания с периодичностью в m моментов времени. Если же ни один из коэффициентов автокорреляции не является значимым, то можно сделать одно из двух предположений:

либо ряд не содержит тенденции и циклических колебаний, а его уровень определяется только случайной компонентой;

либо ряд содержит сильнуюнелинейную тенденцию, для выявления которой нужно провести дополнительный анализ.

Необходимо подчеркнуть, что линейные коэффициенты автокорреляции характеризуют тесноту только линейной связи текущего и предыдущих уровней ряда. Поэтому, по коэффициентам автокорреляции можно судить только о наличии или отсутствии линейной зависимости (или близкой к линейной). Для некоторых временных рядов, имеющих сильную нелинейную тенденцию (например, параболу второго порядка или экспоненту), коэффициент автокорреляции уровней исходного ряда может приближаться к нулю. По знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда. Большинство временных рядов экономических данных содержат положительную автокорреляцию уровней, однако, при этом могут иметь убывающую тенденцию.

Для проверки ряда на наличие нелинейной тенденции рекомендуется вычислить линейные коэффициенты автокорреляции для временного ряда, состоящего из логарифмов исходных уровней. Отличные от нуля значения коэффициентов автокорреляции будут свидетельствовать о наличии нелинейной тенденции.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]