- •1. Основные представления о моделировании. Базовые понятия и термины.
- •2.Основные типы моделей. Их сравнительная оценка и области применения. Современные задачи развития математического моделирования в экологии.
- •3. Статистические модели. Нормальное распределение. Выборка и генеральная совокупность. Основная область применения в экологии и почвовед.
- •4. Иммитационные модели. Их задачи, возможности и ограничения. Осноблпримен.
- •5. Графовые модели. Их задачи, возможности и ограничения. Основная область применения в экологии и почвоведении.
- •6.Табличные модели. Их задачи, возможности и ограничения. Основная область применения в экологии и почвоведении.
- •7. Регрессионные модели. Их задачи, возможности и ограничения. Основная область применения в экологии и почвоведении.
- •8. Основные понятия регрессионного анализа. Типы регрессии. Их прикладная интерпретация.
- •9. Метод наименьших квадратов. Области его применения.
- •10. Оценка качества регрессионной модели. Способы улучшения качества регрессионной модели.
- •11. Множественная регрессия. Ее преимущества и недостатки. Основная область применения в экологии и почвоведении.
- •12. Пространственные модели. Основная область применения в экологии и почвоведении.
- •13. Корреляция рядов динамики. Основная область применения в экологии и почвоведении.
- •14. Оценка точности прогноза. Особенности поискового прогнозирования в экологии и почвоведении.
- •15. Геостатистика. Пространственно координированные данные. Типы данных в гис.
- •16. Модели представления пространственных данных. Растровый и векторный подход.
- •17. Интерполяция пространственных данных. Особенности применения в экологии и почвоведении.
- •18. Классификация пространственных данных. Особенности их применения в экологии и почвоведении.
- •19. Геоинформационные математические модели. Основная область применения в экологии, почвоведении, агрохимии
- •20. Сравнительный анализ растровых и векторных гис. Их преимущества и недостатки. Основная область применения в экологии и почвоведении.
- •21. Как можно создавать новые тематические слои.
- •22. Моделирование пригодности и рисков в гис.
- •23. Анализ рельефа в гис. Цифровые карты рельефа.
- •24. Алгебра карт. Применение алгебраических и логических операций при создании новых слоев гис.
- •25. Генерализация пространственных данных. Особенности генерализации пространственных данных в почвоведении и экологии.
- •26. Имитационное моделирование. Имитация природных процессов.
- •32 .Использование методов математического моделирования для решения оптимизационных задач.
- •33 . Пример использования регрессионной модели в экологии или почвоведении
- •34. Использование метода усреднения ряда динамики скользящим окном
- •35. Особенности выбора наилучшего тренда ряда динамики
- •36. Процедура и задачи оценки наличия автокорреляции в ряду динамики.
- •37. Особенности построения уравнения авторегрессии
- •38. Процедура и задачи оценки автокорреляции между 2 рядами данных
- •39. Расчет точности прогноза по коэффициенту расхождения
- •40. Интерполяция данных по методу обычного кригинга
- •42. Способ генерализации карты методом скользящего окна с помощью гис.
- •44. Способ анализа зависимости потенциальной продуктивности от глубины грунтовых вод.И 45. Способ анализа зависимости потенциальной продуктивности от начальной влажности почв.
- •46. Способ анализа зависимости потенциальной продуктивности от типа почв.
- •47. Основные особенности анализа и моделирования статистических и динамических систем.
- •48. Методологические особенности экологического математического моделирования.
- •49. Основные проблемы и принципиальные ограничения использования методов математического моделирования в почвоведении.
- •50. Для решения каких прикладных задач можно использовать экологические геоинформационные модели и системы?
- •51. Какие методы математического моделирования используются в классификации почв и экосистем?
- •52. Как проводится картографическое моделирование воздействия источников загрязнения атмосферы на ситуационных и генеральных планах объектов овос (оценки воздействия на окружающую среду)?
- •2. Роль и место гис в природоохранных мероприятия
- •54. Какими методами математического моделирования определяют экологически значимые факторы?
36. Процедура и задачи оценки наличия автокорреляции в ряду динамики.
Автокорреляция — статистическая взаимосвязь между случайными величинами из одного ряда, но взятых со сдвигом, например, для случайного процесса — со сдвигом по времени.
Эконометрические модели, характеризующие протекание процесса во времени или состояние одного объекта в последовательные моменты времени (или периоды времени), представляют модели временных рядов. Временным рядом называется последовательность значений признака, принимаемых в течение нескольких последовательных моментов времени или периодов. Эти значения называются уровнями ряда. Между уровнями временного ряда, или ряда динамики, может иметься зависимость. В этом случае значения каждого последующего уровня ряда зависят от предыдущих. Подобную корреляционную зависимость между последовательными уровнями ряда динамики называют автокорреляцией уровней ряда.
Количественное измерение корреляции осуществляется посредством использования линейного коэффициента корреляции между уровнями исходного временного ряда и уровнями этого ряда, сдвинутыми на несколько шагов во времени Если сдвиг во времени составляет всего один шаг, то соответствующий коэффициент корреляции называется коэффициентом автокорреляции уровней ряда первого порядка. При этом лаг равен 1. Измеряется же зависимость между соседними уровнями ряда. В общем случае число шагов (или циклов), на которые осуществляется сдвиг, характеризующий влияние запаздывания, также называется лагом. С увеличением лага число пар значений, по которым рассчитывается коэффициент автокорреляции, уменьшается. Динамика уровней ряда может иметь основную тенденцию (тренд). Это весьма характерно для экономических показателей. Тренд является результатом совместного длительного действия множества, как правило, разнонаправленных факторов на динамику исследуемого показателя. Довольно часто динамика уровней ряда подвержена циклическим колебаниям, которые зачастую носят сезонный характер. Иногда не удается выявить тренд и циклическую компоненту. Правда нередко в этих случаях ‑ каждый следующий уровень ряда образуется как сумма среднего уровня ряда и некоторой случайной компоненты.
Для выявления трендовой, циклической компонент можно использовать коэффициент автокорреляции уровней ряда и автокорреляционную функцию. Автокорреляционная функция — это последовательность коэффициентов автокорреляции уровней первого, второго и последующих порядков. Соответственно график зависимости значений автокорреляционной функции от величины лага (порядка коэффициента автокорреляции) — коррелограмма. Анализ автокорреляционной функции и коррелограммы позволяет определить лаг, при котором автокорреляция наиболее высокая, а следовательно, и лаг, при котором связь между текущим и предыдущими уровнями ряда наиболее тесная.
Прежде чем пояснить это, отметим: коэффициент автокорреляции характеризует тесноту только линейной связи текущего и предыдущего уровней ряда. Если ряд имеет сильную нелинейную тенденцию, коэффициент автокорреляции может приближаться к нулю. Знак его не может служить указанием на наличие возрастающей или убывающей тенденции в уровнях ряда.
Теперь об анализе структуры временного ряда с помощью автокорреляционной функции и коррелограммы. Довольно ясно, что, если наиболее высоким оказался коэффициент автокорреляции первого порядка, то исследуемый ряд содержит основную тенденцию, или тренд, и, скорее всего, только ее. Если ситуация иная, когда наиболее высоким оказался коэффициент корреляции некоторого отличного от единицы порядка, то ряд содержит циклические компоненты (циклические колебания) с периодом моментов времени. Наконец, если ни один из коэффициентов корреляции не является значимым, то достаточно правдоподобны следующие две гипотезы. Либо ряд не содержит ни тренда, ни циклических компонентов, так что его структура носит флуктуационный (резко случайный) характер. Либо имеется сильная нелинейная тенденция, обнаружение которой требует дополнительных специальных исследований.
Автокорреляция связана с нарушением третьего условия Гаусса — Маркова, что значение случайного члена (случайного компонента, или остатка) в любом наблюдении определяется независимо от его значений во всех других наблюдениях. Для экономических моделей характерна постоянная направленность воздействия не ‑ включенных в уравнение регрессии переменных, являющихся наиболее частой причиной положительной автокорреляции. Случайный член в регрессионной зависимости подвергается воздействию переменных, влияющих на зависимую переменную, которые не включены в уравнение регрессии. Если значение случайного компонента в любом наблюдении должно быть независимым от его значения в предыдущем наблюдении, то и значение любой переменной, «скрытой» в случайном компоненте, должно быть некоррелированным с ее значением в предыдущем наблюдении.
