- •1. Основные представления о моделировании. Базовые понятия и термины.
- •2.Основные типы моделей. Их сравнительная оценка и области применения. Современные задачи развития математического моделирования в экологии.
- •3. Статистические модели. Нормальное распределение. Выборка и генеральная совокупность. Основная область применения в экологии и почвовед.
- •4. Иммитационные модели. Их задачи, возможности и ограничения. Осноблпримен.
- •5. Графовые модели. Их задачи, возможности и ограничения. Основная область применения в экологии и почвоведении.
- •6.Табличные модели. Их задачи, возможности и ограничения. Основная область применения в экологии и почвоведении.
- •7. Регрессионные модели. Их задачи, возможности и ограничения. Основная область применения в экологии и почвоведении.
- •8. Основные понятия регрессионного анализа. Типы регрессии. Их прикладная интерпретация.
- •9. Метод наименьших квадратов. Области его применения.
- •10. Оценка качества регрессионной модели. Способы улучшения качества регрессионной модели.
- •11. Множественная регрессия. Ее преимущества и недостатки. Основная область применения в экологии и почвоведении.
- •12. Пространственные модели. Основная область применения в экологии и почвоведении.
- •13. Корреляция рядов динамики. Основная область применения в экологии и почвоведении.
- •14. Оценка точности прогноза. Особенности поискового прогнозирования в экологии и почвоведении.
- •15. Геостатистика. Пространственно координированные данные. Типы данных в гис.
- •16. Модели представления пространственных данных. Растровый и векторный подход.
- •17. Интерполяция пространственных данных. Особенности применения в экологии и почвоведении.
- •18. Классификация пространственных данных. Особенности их применения в экологии и почвоведении.
- •19. Геоинформационные математические модели. Основная область применения в экологии, почвоведении, агрохимии
- •20. Сравнительный анализ растровых и векторных гис. Их преимущества и недостатки. Основная область применения в экологии и почвоведении.
- •21. Как можно создавать новые тематические слои.
- •22. Моделирование пригодности и рисков в гис.
- •23. Анализ рельефа в гис. Цифровые карты рельефа.
- •24. Алгебра карт. Применение алгебраических и логических операций при создании новых слоев гис.
- •25. Генерализация пространственных данных. Особенности генерализации пространственных данных в почвоведении и экологии.
- •26. Имитационное моделирование. Имитация природных процессов.
- •32 .Использование методов математического моделирования для решения оптимизационных задач.
- •33 . Пример использования регрессионной модели в экологии или почвоведении
- •34. Использование метода усреднения ряда динамики скользящим окном
- •35. Особенности выбора наилучшего тренда ряда динамики
- •36. Процедура и задачи оценки наличия автокорреляции в ряду динамики.
- •37. Особенности построения уравнения авторегрессии
- •38. Процедура и задачи оценки автокорреляции между 2 рядами данных
- •39. Расчет точности прогноза по коэффициенту расхождения
- •40. Интерполяция данных по методу обычного кригинга
- •42. Способ генерализации карты методом скользящего окна с помощью гис.
- •44. Способ анализа зависимости потенциальной продуктивности от глубины грунтовых вод.И 45. Способ анализа зависимости потенциальной продуктивности от начальной влажности почв.
- •46. Способ анализа зависимости потенциальной продуктивности от типа почв.
- •47. Основные особенности анализа и моделирования статистических и динамических систем.
- •48. Методологические особенности экологического математического моделирования.
- •49. Основные проблемы и принципиальные ограничения использования методов математического моделирования в почвоведении.
- •50. Для решения каких прикладных задач можно использовать экологические геоинформационные модели и системы?
- •51. Какие методы математического моделирования используются в классификации почв и экосистем?
- •52. Как проводится картографическое моделирование воздействия источников загрязнения атмосферы на ситуационных и генеральных планах объектов овос (оценки воздействия на окружающую среду)?
- •2. Роль и место гис в природоохранных мероприятия
- •54. Какими методами математического моделирования определяют экологически значимые факторы?
34. Использование метода усреднения ряда динамики скользящим окном
Несколько более гибок и опирается на количественные (аналитические) инструменты анализа метод скользящей средней, или скользящего окна. В нем последовательно рассчитывается вместо одного полного среднего для всех наблюдений ряд так называемых частных средних для трех, пяти наблюдений или более, номера которых постоянно сдвигаются вправо (в сторону увеличения). Таким образом, получается последовательность частных средних, которая отсеивает несущественные флуктуации и способна легче обнаружить тренд, чем данные исходного ряда. Очевидно также, что при описанном выше использовании коэффициентов автокорреляции уровней ряда для выявления тренда используется сравнение коэффициентов автокорреляции первого порядка, рассчитанных по исходным и преобразованным уровням ряда. Ясно, что при наличии линейного тренда соседние уровни ряда тесно коррелируют. Для нелинейного тренда дело обстоит сложнее, но нередко может быть упрощено сведением к линейному случаю соответствующим преобразованием переменных.
Метод скользящих средних
Метод скользящих средних базируется на предположении, считающимся тривиальным:
при определении средних значений случайные отклонения погашаются. При сглаживании
этим методом фактические значения ряда динамики заменяются средними значениями, которые характеризуют срединную точку периода скольжения .
Простое сглаживание основывается на составлении нового ряда из простыхсреднихарифметических.
Метод скользящих средних имеет ряд преимуществ перед другими методами:
- скользящая средняя дает функцию тренда, в наибольшей мере приближенную к значениям исследуемого ряда, поскольку для отдельных частей ряда выбирается наилучшая тенденция;
- к исследуемому ряду могут быть прибавлены новые значения;
- нахождение тренда не связано с большими вычислительными трудностями.
Недостатком метода скользящей средней является то обстоятельство, что при
увеличении периода скольжения теряется информация о крайних периодах ряда, что недопустимо при некоторых приемах анализа временных рядов (например, при спектральноманализе). Кроме того, этот метод (и другие, подобные ему) может вызывать автокорреляцию остатков, даже если она отсутствовала в исходном ряду - так называемый
эффект Слуцкого – Юла.
35. Особенности выбора наилучшего тренда ряда динамики
В центре внимания исследователей находятся обычно общие закономерности, скрытые в эмпирических данных и отражающие внутреннюю структуру явления. Трендом (или тенденцией) называют неслучайную медленно меняющуюся составляющую временного ряда, на которую могут накладываться случайные колебания или сезонные эффекты.
Методы выделения тренда .
Выбор стратегии и методов предварительной обработки и анализа рядов динамики безусловно зависит от конечной цели исследователя. Однако, как правило, первым этапом является оценка тренда временного ряда.
Для длинных рядов выделение тренда носит обычно разведочный характер, так как часто невозможно указать подходящую параметрическую кривую для аппроксимации ряда на всей его длине. Для выделения тренда в этом случае используют различные непараметрические методы анализа временных рядов, такие как, сглаживание скользящими средними или скользящими медианами, частотную фильтрацию и т.п.
В отличие от параметрических методов выделения тренда, эти методы пригодны лишь для осреднения значений ряда по точкам некоторой окрестности и немогутбыть использованы для прогнозирования (экстраполяции) динамических рядов, поскольку не дают в явном виде расчетного уравнения детерминированной компоненты f(t).
Однако получение достаточно гладкой траектории дает возможность визуально оценить наличие тенденции в условиях сильной зашумленности, а также выделить ряд остатков y(t) =x(t) - f(t), как случайную компоненту временной последовательности, если конечной цельюисследования является построение моделей авторегрессии для прогнозирования.
Для краткосрочного прогнозирования рядов, содержащих неправильно меняющийся тренд, можно использовать метод экспоненциального сглаживания, в котором при построении прогноза наибольшие веса приписываются последним наблюдениям.
Для коротких временных рядов наиболее употребительны параметрические методы
выделения тренда. В этом случае делается попытка представить временной ряд в виде суммы детерминированной функции времени f(t, a), зависящей от небольшого числа неизвестных параметров, и случайной компоненты
Не существует "автоматического" способа обнаружения тренда в временном ряде. Однако если тренд является монотонным (устойчиво возрастает или устойчиво убывает), то анализировать такой ряд обычно нетрудно. Если временные ряды содержат значительную ошибку, то первым шагом выделения тренда является сглаживание.
Сглаживание. Сглаживание всегда включает некоторый способ локального усреднения данных, при котором несистематические компоненты взаимно погашают друг друга. Самый общий метод сглаживания - скользящее среднее, в котором каждый член ряда заменяется простым или взвешенным средним n соседних членов. Вместо среднего можно использовать медиану значений, попавших в окно. Основное преимущество медианного сглаживания, в сравнении со сглаживанием скользящим средним, состоит в том, что результаты становятся более устойчивыми к выбросам (имеющимся внутри окна). Таким образом, если в данных имеются выбросы (связанные, например, с ошибками измерений), то сглаживание медианой обычно приводит к более гладким или, по крайней мере, более "надежным" кривым, по сравнению со скользящим средним с тем же самым окном. Основной недостаток медианного сглаживания в том, что при отсутствии явных выбросов, он приводит к более "зубчатым" кривым (чем сглаживание скользящим средним) и не позволяет использовать веса.
Относительно реже, когда ошибка измерения очень большая, используется метод сглаживания методом наименьших квадратов, взвешенных относительно расстояния или метод отрицательного экспоненциально взвешенного сглаживания. Все эти методы отфильтровывают шум и преобразуют данные в относительно гладкую кривую (см. соответствующие разделы, где каждый из этих методов описан более подробно).
Подгонка функции. Многие монотонные временные ряды можно хорошо приблизить линейной функцией. Если же имеется явная монотонная нелинейная компонента, то данные вначале следует преобразовать, чтобы устранить нелинейность. Обычно для этого используют логарифмическое, экспоненциальное или (менее часто) полиномиальное преобразование данных.
