- •1. Основные представления о моделировании. Базовые понятия и термины.
- •2.Основные типы моделей. Их сравнительная оценка и области применения. Современные задачи развития математического моделирования в экологии.
- •3. Статистические модели. Нормальное распределение. Выборка и генеральная совокупность. Основная область применения в экологии и почвовед.
- •4. Иммитационные модели. Их задачи, возможности и ограничения. Осноблпримен.
- •5. Графовые модели. Их задачи, возможности и ограничения. Основная область применения в экологии и почвоведении.
- •6.Табличные модели. Их задачи, возможности и ограничения. Основная область применения в экологии и почвоведении.
- •7. Регрессионные модели. Их задачи, возможности и ограничения. Основная область применения в экологии и почвоведении.
- •8. Основные понятия регрессионного анализа. Типы регрессии. Их прикладная интерпретация.
- •9. Метод наименьших квадратов. Области его применения.
- •10. Оценка качества регрессионной модели. Способы улучшения качества регрессионной модели.
- •11. Множественная регрессия. Ее преимущества и недостатки. Основная область применения в экологии и почвоведении.
- •12. Пространственные модели. Основная область применения в экологии и почвоведении.
- •13. Корреляция рядов динамики. Основная область применения в экологии и почвоведении.
- •14. Оценка точности прогноза. Особенности поискового прогнозирования в экологии и почвоведении.
- •15. Геостатистика. Пространственно координированные данные. Типы данных в гис.
- •16. Модели представления пространственных данных. Растровый и векторный подход.
- •17. Интерполяция пространственных данных. Особенности применения в экологии и почвоведении.
- •18. Классификация пространственных данных. Особенности их применения в экологии и почвоведении.
- •19. Геоинформационные математические модели. Основная область применения в экологии, почвоведении, агрохимии
- •20. Сравнительный анализ растровых и векторных гис. Их преимущества и недостатки. Основная область применения в экологии и почвоведении.
- •21. Как можно создавать новые тематические слои.
- •22. Моделирование пригодности и рисков в гис.
- •23. Анализ рельефа в гис. Цифровые карты рельефа.
- •24. Алгебра карт. Применение алгебраических и логических операций при создании новых слоев гис.
- •25. Генерализация пространственных данных. Особенности генерализации пространственных данных в почвоведении и экологии.
- •26. Имитационное моделирование. Имитация природных процессов.
- •32 .Использование методов математического моделирования для решения оптимизационных задач.
- •33 . Пример использования регрессионной модели в экологии или почвоведении
- •34. Использование метода усреднения ряда динамики скользящим окном
- •35. Особенности выбора наилучшего тренда ряда динамики
- •36. Процедура и задачи оценки наличия автокорреляции в ряду динамики.
- •37. Особенности построения уравнения авторегрессии
- •38. Процедура и задачи оценки автокорреляции между 2 рядами данных
- •39. Расчет точности прогноза по коэффициенту расхождения
- •40. Интерполяция данных по методу обычного кригинга
- •42. Способ генерализации карты методом скользящего окна с помощью гис.
- •44. Способ анализа зависимости потенциальной продуктивности от глубины грунтовых вод.И 45. Способ анализа зависимости потенциальной продуктивности от начальной влажности почв.
- •46. Способ анализа зависимости потенциальной продуктивности от типа почв.
- •47. Основные особенности анализа и моделирования статистических и динамических систем.
- •48. Методологические особенности экологического математического моделирования.
- •49. Основные проблемы и принципиальные ограничения использования методов математического моделирования в почвоведении.
- •50. Для решения каких прикладных задач можно использовать экологические геоинформационные модели и системы?
- •51. Какие методы математического моделирования используются в классификации почв и экосистем?
- •52. Как проводится картографическое моделирование воздействия источников загрязнения атмосферы на ситуационных и генеральных планах объектов овос (оценки воздействия на окружающую среду)?
- •2. Роль и место гис в природоохранных мероприятия
- •54. Какими методами математического моделирования определяют экологически значимые факторы?
32 .Использование методов математического моделирования для решения оптимизационных задач.
Оптимизационная задача - экономико-математическая задача, цель которой состоит в нахождении наилучшего (с точки зрения какого-то критерия) распределения наличных ресурсов. Решается с помощью оптимизационной модели методами математического программирования.
В отличие от балансовых моделей оптимизационные модели кроме уравнений или неравенств, описывающих взаимосвязи между переменными, содержат критерий для выбора - функционал или целевую функцию, набирает значение в пределах области допустимых решений. Целевая функция в общем виде определяется тремя моментами: управляемыми переменными, неуправляемыми параметрами (зависящие, например, от внешней среды) и формой зависимости между ними (видом функции).
Выбор методов математического программирования для решения оптимизационных задач определяется видом целевой функции, видом ограничений, определяющие область М, и специальными ограничениями на управляемые переменные (например, требованием поихцелочисленности). Решение задачи (3.1) обычно называется оптимальным решением, или оптимальным планом.
В ряде случаев такие задачи решаются с использованием обычных методов, например симплексной, с последующим округлением до целых чисел или методом Гомори для линейных задач целочисленного программирования.
Итерация - повторное применение математической операции (с измененными данными) при решении вычислительных задач для постепенною приближения к нужному результату. Итеративные расчеты на ЭВМ характерны для решения экономических (особенно оптимизационных и балансовых) задач. Чем меньше требуется пересчетов, тем быстрее сходится алгоритм.
33 . Пример использования регрессионной модели в экологии или почвоведении
Термину регрессионная модель, используемому в регрессионном анализе, можно сопоставить синонимы: «теория», «гипотеза». Эти термины пришли из статистики, в частности из раздела «проверка статистических гипотез». Регрессионная модель есть прежде всего гипотеза, которая должна быть подвергнута статистической проверке, после чего она принимается или отвергается.
Регрессионная модель объединяет широкий класс универсальных функций, которые описывают некоторую закономерность. При этом для построения модели в основном используются измеряемые данные, а не знание свойств исследуемой закономерности. Такая модель часто неинтерпретируема, но более точна. Это объясняется либо большим числом моделей-претендентов, которые используются для построения оптимальной модели, либо большой сложностью модели. Нахождение параметров регрессионной модели называется обучением модели.
Недостатки регрессионного анализа: модели, имеющие слишком малую сложность, могут оказаться неточными, а модели, имеющие избыточную сложность, могут оказаться переобученными.
Примеры регрессионных моделей: линейные функции, алгебраические полиномы, ряды Чебышёва, нейронные сети без обратной связи, например, однослойный персептрон Розенблатта, радиальные базисные функции и прочее.
В качестве примера представлены два варианта регрессионных моделей экологической ниши желтогорлой мыши (Apodemus flavicollis Melchior, 1834), построенные на основании данных, собранных автором на трансекте, проложенной через различные варианты ельников Центрально-Лесного заповедника.
Учет численности животных осуществлялся на площадках трансекты с постоянным шагом в 20 метров. На каждой учетной площадке фиксировалась численность видов и различные параметры среды. Модели экологической ниши строились на основании значений осей факторов-координат экологического пространства, которые были получены путем преобразования матрицы коэффициентов гамма-корреляций между различными видами, отмеченными на трансекте. Преобразование выполнялось при помощи процедуры многомерного непараметрического шкалирования. Преимущество такого метода построения моделей в том, что происходит значительная редукция переменных среды без существенной потери информации, в результате чего исследователь имеет дело всего лишь с несколькими ключевыми переменными (факторами) вместо десятков характеристик. Полученные значения осей отражают изменение численности видов в пространстве абстрактных факторов, представленных через восприятие этих факторов самими видами [1, с. 297]. Физический смысл абстрактных факторов определялся при помощи корреляционного анализа. Всего было выделено четыре координаты экологического пространства.
1)Линейная модель пошаговой множественной регрессии, построенная на основе четырех выделенных факторов, объясняет 61,4 % варьирования численности желтогорлой мыши
2)В другую модель, построенную при помощи итерационных методов нелинейной регрессии, реализуемого в модуле «Нелинейное оценивание» в программе STATISTICA, были введены дополнительные элементы. Это повысило предсказательную силу модели до 79,7 %, что очень существенно, особенно если речь идет о природных условиях.
Вторая регрессионная модель, содержащая нелинейные элементы, предсказывает размещение и вероятную численность желтогорлой мыши, значительно лучше первой, которая учитывает лишь самую общую зависимость. Желтогорлая мышь имеет квадратическую зависимость от фактора 4, что указывает на очень высокую чувствительность к изменениям соответствующих параметров среды. Кроме того, вид зависим от совокупного действия второго и четвертого факторов.
В целом, вторая математическая модель, содержащая нелинейные элементы, позволяет получить дополнительную информацию об особенностях размещения вида при минимуме ошибок.
Таким образом, применение нелинейных регрессионных моделей позволяет учесть более тонкие механизмы пространственного размещения организмов и улучшать качество моделирования путем выявления скрытых зависимостей и неаддитивного действия переменных.
