- •1. Основные представления о моделировании. Базовые понятия и термины.
- •2.Основные типы моделей. Их сравнительная оценка и области применения. Современные задачи развития математического моделирования в экологии.
- •3. Статистические модели. Нормальное распределение. Выборка и генеральная совокупность. Основная область применения в экологии и почвовед.
- •4. Иммитационные модели. Их задачи, возможности и ограничения. Осноблпримен.
- •5. Графовые модели. Их задачи, возможности и ограничения. Основная область применения в экологии и почвоведении.
- •6.Табличные модели. Их задачи, возможности и ограничения. Основная область применения в экологии и почвоведении.
- •7. Регрессионные модели. Их задачи, возможности и ограничения. Основная область применения в экологии и почвоведении.
- •8. Основные понятия регрессионного анализа. Типы регрессии. Их прикладная интерпретация.
- •9. Метод наименьших квадратов. Области его применения.
- •10. Оценка качества регрессионной модели. Способы улучшения качества регрессионной модели.
- •11. Множественная регрессия. Ее преимущества и недостатки. Основная область применения в экологии и почвоведении.
- •12. Пространственные модели. Основная область применения в экологии и почвоведении.
- •13. Корреляция рядов динамики. Основная область применения в экологии и почвоведении.
- •14. Оценка точности прогноза. Особенности поискового прогнозирования в экологии и почвоведении.
- •15. Геостатистика. Пространственно координированные данные. Типы данных в гис.
- •16. Модели представления пространственных данных. Растровый и векторный подход.
- •17. Интерполяция пространственных данных. Особенности применения в экологии и почвоведении.
- •18. Классификация пространственных данных. Особенности их применения в экологии и почвоведении.
- •19. Геоинформационные математические модели. Основная область применения в экологии, почвоведении, агрохимии
- •20. Сравнительный анализ растровых и векторных гис. Их преимущества и недостатки. Основная область применения в экологии и почвоведении.
- •21. Как можно создавать новые тематические слои.
- •22. Моделирование пригодности и рисков в гис.
- •23. Анализ рельефа в гис. Цифровые карты рельефа.
- •24. Алгебра карт. Применение алгебраических и логических операций при создании новых слоев гис.
- •25. Генерализация пространственных данных. Особенности генерализации пространственных данных в почвоведении и экологии.
- •26. Имитационное моделирование. Имитация природных процессов.
- •32 .Использование методов математического моделирования для решения оптимизационных задач.
- •33 . Пример использования регрессионной модели в экологии или почвоведении
- •34. Использование метода усреднения ряда динамики скользящим окном
- •35. Особенности выбора наилучшего тренда ряда динамики
- •36. Процедура и задачи оценки наличия автокорреляции в ряду динамики.
- •37. Особенности построения уравнения авторегрессии
- •38. Процедура и задачи оценки автокорреляции между 2 рядами данных
- •39. Расчет точности прогноза по коэффициенту расхождения
- •40. Интерполяция данных по методу обычного кригинга
- •42. Способ генерализации карты методом скользящего окна с помощью гис.
- •44. Способ анализа зависимости потенциальной продуктивности от глубины грунтовых вод.И 45. Способ анализа зависимости потенциальной продуктивности от начальной влажности почв.
- •46. Способ анализа зависимости потенциальной продуктивности от типа почв.
- •47. Основные особенности анализа и моделирования статистических и динамических систем.
- •48. Методологические особенности экологического математического моделирования.
- •49. Основные проблемы и принципиальные ограничения использования методов математического моделирования в почвоведении.
- •50. Для решения каких прикладных задач можно использовать экологические геоинформационные модели и системы?
- •51. Какие методы математического моделирования используются в классификации почв и экосистем?
- •52. Как проводится картографическое моделирование воздействия источников загрязнения атмосферы на ситуационных и генеральных планах объектов овос (оценки воздействия на окружающую среду)?
- •2. Роль и место гис в природоохранных мероприятия
- •54. Какими методами математического моделирования определяют экологически значимые факторы?
21. Как можно создавать новые тематические слои.
Пространственные данные в ГИС организованы в виде тематических (векторных и растровых) слоев. Каждый тематический слой карты - множество объектов карты, сгруппированных по принципу тематической близости - слой гидрографии, слой дорог, слой лесных выделов, слой границ землевладений. Слои могут перекрывать друг друга, лежать выше или ниже.
Рис. Тематические слои ГИС
Работа с векторными слоями ГИС
Для создания нового векторного слоя ГИС необходимо:
запустить программу ArcGIS>ArcCatalog, при этом в новом окне
появится “дерево” директорий (папок) подключенных дисков;
выбрать директорию для сохранения нового слоя;
нажав правую кнопку мышки из всплывающего меню выбрать New
(Новый), в следующем меню – Shapefile (Шейп-файл) (Рис. 2)
в новом окне заполнить поле Name (Имя файла), выбрать FeatureType
(Тип объекта) и нажать OK
22. Моделирование пригодности и рисков в гис.
Принцип на примере ArcGIS 10.1
Инструмент Взвешенное наложение (WeightedOverlay) использует стандартный механизм для анализа наложения, для решения задач с учетом нескольких критериев, например, поиск подходящего местоположения и модели пригодности. В анализе взвешенного наложения выполняются все общие шаги анализа наложения.
Более подробно об анализе наложения
Как и в случае со всеми анализами наложения, в анализе взвешенного наложения вам необходимо определить проблему, разбить модель на подмодели и определить входные слои.
Т.к. слои входных критериев будут в различных числовых системах с различными диапазонами, чтобы объединить их в один анализ, каждая ячейка для каждого критерия должна быть переклассифицирована по общей шкале пригодности, например, от 1 до 10, где значение 10 соответствует максимальной пригодности. Присвоенное предпочтение по общей шкале означает оценку пригодности для конкретного критерия. Значения пригодности представлены относительными величинами. Т.е. пригодность 10 в два раза предпочтительнее, чем пригодность 5.
Значения пригодности должны быть пересчитаны по одной шкале и относительно друг друга в слое, и между слоями. Например, если ячейке в слое одного из критериев присвоена пригодность 5, то такое же влияние на явление окажет пригодность 5 в слое другого критерия.
Например, в примерной модели пригодности жилья, может быть три входных критерия: уклон, экспозиция и расстояние до дорог. Уклоны переклассифицируются по шкале от 1 до 10, и чем ровнее плоскость, тем более пригодны участки для жилья, и им присваиваются высокие значения. По мере увеличения крутизны уклонов, им присваиваются более низкие значения, и самым крутым уклонам присваивается значение 1. Тот же процесс переклассификации по шкале от 1 до 10 выполняется для слоя экспозиции, где более благоприятным экспозициям (в данном случае более южным) присваиваются большие значения. Тот же процесс переклассификации применяется к критерию расстояния до дорог. Местоположения ближе к дорогам более предпочтительны, т.к. они дешевле для строительства, потому что они имеют более легкий доступ к степени и им требуются более короткие подъездные пути. Ячейки со значением пригодности 5 на переклассифицированном слое уклона, будут в два раза дороже для строительства, чем ячейки со значением 10. Ячейки со значением пригодности 5 на переклассифицированном слое уклона, будет иметь ту же стоимость, что ячейки со значением 5 на переклассифицированном слое расстояний до дорог.
Каждый критерий во взвешенном анализе наложения не обязательно равен по важности. Вы можете присвоить веса более важным критериям. Например, в примерной модели пригодности жилья, вы можете решить, что лучшая освещенность более важна, чем уклон и расстояния до дорог. Таким образом, вы можете присвоить веса слою экспозиции в два раза больше, чем слоям уклона и расстояния до дорог.
Входные критерии умножаются на веса, затем складываются. Например, в модели пригодности жилья экспозиция умножается на 2, и три критерия складываются, то есть, (2 * экспозиция) + уклон + расстояние до дорог.
Последний шаг процесса анализа наложения - проверить модель, чтобы убедиться, что территория, на которую указывает модель, на месте. После проверки модели выбирается территория на которой будет построено здание.
