- •Міністерство освіти і науки України Національний Університет “Львівська Політехніка”
- •Дослідження дискретного перетворення фур’є та його властивостей
- •Мета роботи:
- •Інтегральне перетворення Фур’є (пф).
- •Дискретне перетворення Фур’є(дпф)
- •Спектральний аналіз періодичних сигналів
- •Поняття нормованої частоти
- •Аналітичні вирази для знаходження частотного спектру заданого варіантом сигналу:
- •256 Спектральних коефіцієнтів, таблиця значень:
- •Графік зміни спектру для заданої кількості коефіцієнтів:
- •Отримані результати, обраховані в лабораторній роботі №3:
- •Різниця між коефіцієнтами ряду Фур’є та дискретного перетворення Фур’є:
- •Вхідна послідовність за допомогою наближення рядом Фур’є для 256 коефіцієнтів та її графік:
- •Амплітудна та фазова характеристики та їх графіки:
- •Енергія сигналу за формулою Парсеваля:
- •Операція інверсії спектру:
- •Опф шуканого сигналу, що відповідає оберненому спектру та порівняня його із заданим:
- •Висновки:
Різниця між коефіцієнтами ряду Фур’є та дискретного перетворення Фур’є:
Різниця між коефіцієнтами ряду Фур’є та дискретного перетворення Фур’є,
зумовлена наступним:
Нехай , . Тобто, пряме ДПФ наближає (за формулою чисельного інтегрування прямокутників) коефіцієнти розкладу сигналу в ряд Фур'є: , .
При збільшенні , зменшенні , похибка (методу) такого представлення зменшується. Подібне має місце і при оберненому перетворенні, тобто наближенні сигналу відрізком ряду Фур'є, коли обмежуються границі підсумування в формулі (1).
Вхідна послідовність за допомогою наближення рядом Фур’є для 256 коефіцієнтів та її графік:
Таблиця вхідної послідовності отриманої за допомогою наближення рядом Фур’є.
№ |
Значення |
№ |
Значення |
№ |
Значення |
|
|
30.618019 + 3.8501792i |
87. |
18.867684 + 2.9256704i |
|
30.62614 - 2.8539589i |
|
|
30.487541 + 4.0838067i |
|
18.731809 + 2.7783494i |
|
30.626881 - 2.7636268i |
|
|
30.350621 + 4.2577052i |
|
18.595971 + 2.626148i |
|
30.62759 - 2.6751535i |
|
|
30.213545 + 4.4077188i |
|
18.460172 + 2.4688787i |
|
30.62827 - 2.5884355i |
|
|
30.076443 + 4.5420224i |
|
18.324413 + 2.3063391i |
|
30.628921 - 2.5033758i |
|
|
29.939333 + 4.6644501i |
|
18.188697 + 2.1383108i |
|
30.629543 - 2.419883i |
|
|
29.802221 + 4.7772464i |
|
18.053026 + 1.9645577i |
|
30.630139 - 2.3378715i |
|
|
29.66511 + 4.8818886i |
|
17.917403 + 1.7848241i |
|
30.630708 - 2.2572603i |
|
|
29.528001 + 4.9794232i |
|
17.781832 + 1.5988322i |
|
30.631251 - 2.1779732i |
|
|
29.390894 + 5.0706301i |
|
17.646315 + 1.4062799i |
|
30.631769 - 2.099938i |
|
|
29.25379 + 5.1561126i |
|
17.510857 + 1.2068375i |
|
30.632263 - 2.0230861i |
|
|
29.11669 + 5.2363508i |
|
17.375462 + 1.0001448i |
|
30.632732 - 1.9473527i |
|
|
28.979593 + 5.3117354i |
|
17.240136 + 0.7858067i |
|
30.633179 - 1.8726762i |
|
|
28.842501 + 5.3825902i |
|
17.104885 + 0.5633888i |
|
30.633603 - 1.7989977i |
|
|
28.705413 + 5.4491874i |
|
16.969714 + 0.3324121i |
|
30.634004 - 1.7262613i |
|
|
28.56833 + 5.5117589i |
|
16.834633 + 0.0923464i |
|
30.634383 - 1.6544133i |
|
|
28.431253 + 5.570504i |
|
16.69965 - 0.1573970i |
|
30.634741 - 1.5834027i |
|
|
28.294181 + 5.6255957i |
|
16.564775 - 0.4174745i |
|
30.635078 - 1.5131802i |
|
|
28.157115 + 5.6771852i |
|
16.430022 - 0.6886210i |
|
30.635394 - 1.4436987i |
|
|
28.020056 + 5.7254055i |
|
16.295404 - 0.9716630i |
|
30.63569 - 1.3749128i |
|
|
27.883004 + 5.7703744i |
|
16.16094 - 1.2675346i |
|
30.635965 - 1.3067789i |
|
|
27.745958 + 5.8121962i |
|
16.026648 - 1.5772971i |
|
30.636221 - 1.2392546i |
|
|
27.60892 + 5.8509643i |
|
15.892555 - 1.9021639i |
|
30.636458 - 1.1722992i |
|
|
27.47189 + 5.8867619i |
|
15.75869 - 2.2435306i |
|
30.636675 - 1.1058731i |
|
|
27.334868 + 5.9196639i |
|
15.62509 - 2.6030141i |
|
30.636874 - 1.0399378i |
|
|
27.197854 + 5.9497375i |
|
15.4918 - 2.982503i |
|
30.637054 - 0.9744559i |
|
|
27.060849 + 5.9770431i |
|
15.358877 - 3.3842217i |
|
30.637216 - 0.9093910i |
|
|
26.923854 + 6.0016352i |
|
15.226393 - 3.810817i |
|
30.637359 - 0.8447075i |
|
|
26.786867 + 6.0235628i |
|
15.094441 - 4.2654725i |
|
30.637486 - 0.7803704i |
|
|
26.64989 + 6.0428701i |
|
14.963142 - 4.7520668i |
|
30.637595 - 0.7163456i |
|
|
26.512923 + 6.0595969i |
|
14.832658 - 5.2753932i |
|
30.637686 - 0.6525994i |
|
|
26.375967 + 6.0737789i |
|
14.703208 - 5.8414754i |
|
30.637761 - 0.5890987i |
|
|
26.239021 + 6.0854478i |
|
14.575102 - 6.4580322i |
|
30.637819 - 0.5258107i |
|
|
26.102086 + 6.0946324i |
|
14.448784 - 7.1351867i |
|
30.637861 - 0.4627029i |
|
|
25.965162 + 6.1013579i |
|
14.324924 - 7.8865901i |
|
30.637887 - 0.3997432i |
|
|
25.82825 + 6.1056467i |
|
14.204567 - 8.7312946i |
|
30.637897 - 0.3368996i |
|
|
25.69135 + 6.1075183i |
|
14.089458 - 9.6970647i |
|
30.637891 - 0.2741401i |
|
|
25.554461 + 6.1069896i |
|
13.982722 - 10.8267i |
|
30.637871 - 0.2114329i |
|
|
25.417585 + 6.1040752i |
|
13.890583 - 12.191407i |
|
30.637835 - 0.1487458i |
|
|
25.280722 + 6.0987871i |
|
13.827417 - 13.923399i |
|
30.637784 - 0.0860467i |
|
|
25.143872 + 6.0911352i |
|
13.835444 - 16.314712i |
|
30.637719 - 0.0233031i |
|
|
25.007034 + 6.0811272i |
|
14.111772 - 20.258933i |
|
30.637639 + 0.0395175i |
|
|
24.870211 + 6.0687688i |
|
21.881981 - 34.071588i |
|
30.637545 + 0.1024486i |
|
|
24.733401 + 6.0540635i |
|
29.775623 - 20.727014i |
|
30.637438 + 0.1655236i |
|
|
24.596605 + 6.0370131i |
|
30.188267 - 17.133068i |
|
30.637318 + 0.2287772i |
|
|
24.459823 + 6.0176173i |
|
30.332924 - 15.045912i |
|
30.637184 + 0.2922442i |
|
|
24.323056 + 5.995874i |
|
30.406444 - 13.58831i |
|
30.637037 + 0.3559606i |
|
|
24.186304 + 5.9717793i |
|
30.451008 - 12.475899i |
|
30.636877 + 0.4199635i |
|
|
24.049567 + 5.9453274i |
|
30.480982 - 11.580954i |
|
30.636706 + 0.4842908i |
|
|
23.912845 + 5.9165108i |
|
30.502586 - 10.835226i |
|
30.636522 + 0.5489818i |
|
|
23.776138 + 5.8853202i |
|
30.518944 - 10.198014i |
|
30.636326 + 0.6140774i |
|
|
23.639448 + 5.8517445i |
|
30.531799 - 9.6431155i |
|
30.636119 + 0.6796198i |
|
|
23.502774 + 5.8157706i |
|
30.542198 - 9.15269i |
|
30.635901 + 0.7456534i |
|
|
23.366116 + 5.7773839i |
|
30.550809 - 8.7140513i |
|
30.635672 + 0.8122243i |
|
|
23.229475 + 5.7365677i |
|
30.558077 - 8.3178636i |
|
30.635433 + 0.8793810i |
|
|
23.09285 + 5.6933036i |
|
30.564309 - 7.9570615i |
|
30.635183 + 0.9471746i |
|
|
22.956243 + 5.6475712i |
|
30.569727 - 7.6261726i |
|
30.634923 + 1.015659i |
|
|
22.819653 + 5.5993483i |
|
30.574493 - 7.3208746i |
|
30.634653 + 1.0848913i |
|
|
22.683081 + 5.5486105i |
|
30.578726 - 7.0376955i |
|
30.634374 + 1.1549325i |
|
|
22.546527 + 5.4953316i |
|
30.582521 - 6.7738061i |
|
30.634087 + 1.2258474i |
|
|
22.409991 + 5.4394831i |
|
30.585948 - 6.5268711i |
|
30.63379 + 1.2977056i |
|
|
22.273473 + 5.3810343i |
|
30.589065 - 6.2949417i |
|
30.633485 + 1.3705819i |
|
|
22.136975 + 5.3199525i |
|
30.591918 - 6.0763752i |
|
30.633172 + 1.4445571i |
|
|
22.000495 + 5.2562024i |
|
30.594542 - 5.8697744i |
|
30.632852 + 1.5197189i |
|
|
21.864035 + 5.1897463i |
|
30.596968 - 5.6739418i |
|
30.632523 + 1.5961631i |
|
|
21.727594 + 5.1205442i |
|
30.59922 - 5.487843i |
|
30.632188 + 1.6739944i |
|
|
21.591174 + 5.048553i |
|
30.60132 - 5.3105793i |
|
30.631846 + 1.7533282i |
|
|
21.454774 + 4.9737272i |
|
30.603284 - 5.1413645i |
|
30.631498 + 1.8342926i |
|
|
21.318394 + 4.8960182i |
|
30.605126 - 4.9795075i |
|
30.631144 + 1.9170302i |
|
|
21.182036 + 4.8153742i |
|
30.60686 - 4.8243974i |
|
30.630784 + 2.0017012i |
|
|
21.0457 + 4.7317403i |
|
30.608496 - 4.6754918i |
|
30.630418 + 2.0884873i |
|
|
20.909385 + 4.6450581i |
|
30.610043 - 4.5323068i |
|
30.630048 + 2.1775955i |
|
|
20.773092 + 4.5552655i |
|
30.611508 - 4.3944093i |
|
30.629673 + 2.269265i |
|
|
20.636823 + 4.4622965i |
|
30.612899 - 4.2614098i |
|
30.629293 + 2.3637748i |
|
|
20.500576 + 4.366081i |
|
30.614221 - 4.1329569i |
|
30.62891 + 2.4614548i |
|
|
20.364354 + 4.2665446i |
|
30.61548 - 4.0087327i |
|
30.628522 + 2.5627012i |
|
|
20.228156 + 4.1636081i |
|
30.61668 - 3.8884483i |
|
30.628131 + 2.6679993i |
|
|
20.091983 + 4.0571871i |
|
30.617825 - 3.7718407i |
|
30.627737 + 2.7779568i |
|
|
19.955836 + 3.947192i |
|
30.618919 - 3.6586697i |
|
30.627339 + 2.8933575i |
|
|
19.819715 + 3.8335275i |
|
30.619965 - 3.5487153i |
|
30.626938 + 3.0152515i |
|
|
19.683621 + 3.7160918i |
|
30.620965 - 3.4417755i |
|
30.626531 + 3.1451187i |
|
|
19.547556 + 3.5947766i |
|
30.621923 - 3.3376642i |
|
30.626114 + 3.2852063i |
|
|
19.411519 + 3.4694662i |
|
30.62284 - 3.23621i |
|
30.625668 + 3.43935i |
|
|
19.275512 + 3.3400371i |
|
30.623718 - 3.1372542i |
|
30.625065 + 3.6157259i |
|
|
19.139537 + 3.2063573i |
|
30.62456 - 3.0406499i |
|
|
|
|
19.003593 + 3.0682855i |
|
30.625367 - 2.9462604i |
|
|
Вхідна послідовність за допомогою наближення рядом Фур’є для 256 коефіцієнтів зображена на рисунку.
Порівняння вхідної та наближеної послідовностей.
Рис.4. Порівняння вхідної та наближеної послідовностей
