- •Классификация и основные характеристики, электроэнергетические систем и сетей.
- •7 Представление генераторов при расчетах установившихся режимов
- •8 Задачи расчета электрических сетей
- •Схемы электрических систем
- •9 Расчет линии электропередачи при заданном токе нагрузки
- •Вопрос №10
- •11 Падение и потеря напряжения в линии
- •Вопрос №12
- •Вопрос №13
- •14 Расчетные нагрузки подстанций
- •15. Определение напряжения на стороне низшего напряжения подстанции.
- •17. Допущения при расчете разомкнутых распределительных сетей u˂ 35 кВ включительно.
- •18 Определение наибольшей потери напряжения
- •20.Распределение потоков мощности в простой замкнутой сети без учета потерь мощности
- •2.Линия с количеством узлов, равным n.
- •21. Расчет с учетом потерь мощности
- •22. Эквивалентирование сети при расчете установившегося режима
- •23. Перенос нагрузки в сложной электрической сети при расчёте режима
- •24. Задачи и методы регулирования напряжения в электрической сети Задачи
- •25. Способы изменения и регулирования напряжения в сети
- •26. Встречное регулирование напряжения
- •27. Регулирование напряжения на электростанциях
- •Реактивной мощности
- •Использование в качестве компенсирующего устройства синхронных компенсаторов
- •Включение в качестве компенсирующего устройства батарей конденсаторов
- •Реакторы
- •Статические компенсаторы
- •Установки продольной компенсации
- •31. Определение допустимой потери напряжения в распределительных сетях.
- •32. Централизованное регулирование напряжения в центрах питания.
- •33. Особенности регулирования напряжения в распределительных сетях низших напряжений.
- •34. Баланс активной мощности и его связь с частотой.
- •35. Регулирование частоты в энергосистеме.
- •36. Понятие об оптимальном распределении активной мощности.
- •38. Регулирующий эффект нагрузки.
- •39.Потребители реактивной мощности.
- •41. Компенсация реактивной мощности.
- •42. Компенсирующие устройства.
- •43. Расстановка компенсирующих устройств.
- •46.Определение мощности компенсирующих устройств в сложных сетях.
- •47. Распределение мощности компенсирующих устройств в сложной сети.
- •48. Особенности регулирования напряжения в распределительных и системообразующих сетях высших напряжений.
- •49. Несимметрия в электрических сетях и мероприятия ее снижения.
- •Вопрос №52
- •Вопрос №54 Критерий выбора оптимального варианта
- •57. Выбор сечений проводов и кабелей
- •58. Выбор экономически целесообразных сечений проводов и кабелей
- •Метод экономической плотности тока
- •Выбор сечений проводов и жил кабелей по условиям нагревания
- •61. Перспективы развития еэс России.
42. Компенсирующие устройства.
Включение в качестве компенсирующего устройства батарей конденсаторов позволяет только повышать напряжение, так как конденсаторы могут лишь вырабатывать реактивную мощность. Конденсаторы, подключенные параллельно к сети (рис.17.3,г), обеспечивают поперечную компенсацию. В этом случае БК, генерируя реактивную мощность, повышает коэффициент мощности сети и одновременно регулирует напряжение, поскольку уменьшаются потери напряжения в сети. В период малых нагрузок, когда напряжение в сети повышено, должно быть предусмотрено отключение части БК, чтобы уровни напряжений не превышали допустимых значений
Реактивная мощность , генерируемая БК, определяется по выражению (17.16), которое преобразуется к виду
(17.21)
В последнем выражении относительное повышение напряжения при регулировании, то есть при поперечной компенсации, равно
Реакторы служат для потребления излишней реактивной мощности и относятся к шунтирующим (в отличие от токоограничивающих и заземляющих, здесь не рассматриваемых). Шунтирующие реакторы выполняются в виде трехфазных и однофазных катушек без ответвлений с ненасыщенным магнитопроводом. Номинальные мощности реакторов , которые в силу малых потерь активной мощности (< 1%) можно принять равными , задаются для номинального напряжения.
Шунтирующие нерегулируемые реакторы применяются в основном на конечных и промежуточных подстанциях мощных электропередач, их включение и отключение производится эксплуатационным персоналом по распоряжению диспетчера ЭЭС.
Статические компенсаторы (СТК) — комплексные устройства, не содержащие движущихся частей и пригодные как для потребления, так и для выработки реактивной мощности. Схемы СТК отличаются большим разнообразием, однако обязательно наличие накопительных элементов (индуктивности, емкости) и регулирующих элементов на основе тиристорных преобразователей. В ряде случаев основу СТК составляют упомянутые выше реакторно-тиристорные и конденсаторно-тиристорные блоки.
Установки продольной компенсации (УПК) как средство изменения суммарного реактивного сопротивления линии и, следовательно, напряжения на ее приемном конце можно отнести к линейным регулирующим устройствам. Однако надо иметь в виду следующее.
В сетях высших номинальных напряжений и мощных электропередачах УПК применяется в первую очередь для повышения пропускной способности. Это дорогие устройства, во-первых, из-за изоляции – они изолируются от земли на полное напряжение линии; во-вторых, из-за необходимости защиты конденсаторов от перенапряжений при близких КЗ и при их включении - отключении; в-третьих, из-за коммутационной аппаратуры рассчитанной на высокие напряжения и большие токи. Как средства регулирования напряжения в таких сетях они не выдерживают конкуренции с СК, СТК, реакторами.
Конкурентоспособными с другими регулирующими устройствами УПК могут быть, по-видимому, в радиальных воздушных линиях сетей 6 – 20 кВ или же отдельных питающих линиях среднего напряжения (35, 110 кВ).