Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
исследовательская работа.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
45.49 Кб
Скачать

Исследовательская работа

На тему: Черные дыры – неразгаданные тайны вселенной

Подготовили:

Ученики класса

Школы №578

Шургая Кока, Дубровин Иван

Проверил:

Образцова Ольга Владимировна

2015

СПб

Содержание

  1. Введение

  2. Основная часть

2.1 Образование Чёрных дыр

2.2 Виды Черных дыр

2.3 Термодинамика черных дыр.

2.4 Внутри черной дыры.

2.5 Слияние черных дыр

2.6 Стивен Хокинг и Роджер Пенроуз о Чёрных дырах.

3. Заключение

4. Источники

  1. Введение

Во вселенной немало загадочных и недостаточно изученных объектов. Таких как квазары, нейтронные звезды, темная энергия и темная материя. Но, конечно же, одними из самых интересных объектов является черные дыры.

Черная дыра, возможно, наиболее фантастическая из всех концепций, созданных человеческим разумом. Черные дыры – это и не тела, и не излучение. Они представляют собой сгустки гравитации. Изучение природы черных дыр позволяет существенно расширить наше знание о фундаментальных свойствах пространства и времени. Наиболее замысловатые свойства структуры физического вакуума проявляются в окрестностях черных дыр, где возникают квантовые процессы. Еще более мощные (катастрофически мощные) квантовые процессы происходят внутри самой черной дыры (в окрестности сингулярности). Можно сказать, что черные дыры открывают путь в новое, очень широкое поле познания физического мира.

Тема черных дыр является одной из актуальнейших тем современной астрономии, астрофизики и космологии, так как эти объекты помогают лучше понять устройство нашей вселенной, с момента большого взрыва по настоящий день, а также позволят понять, что будет с нашей вселенной.

Целью моего реферата является понимание того, что такое чёрная дыра. Перед собой я ставлю проблему изучения природы чёрных дыр, возможных механизмов их образования и эволюции. В своем реферате я расскажу о разных типах черных дыр, их слиянии, термодинамике. Одной из важных задач, которую я ставлю перед собой, является изучение и осмысление таких понятий, как горизонт событий, сингулярность, аккреция.

2. Основная часть

2.1 Образование Чёрных дыр

По современным представлениям, есть четыре сценария образования чёрной дыры:

  • Гравитационный коллапс (катастрофическое сжатие) достаточно массивной звезды на конечном этапе её эволюции.

  • Коллапс центральной части галактики или пра-галактического газа. Современные представления помещают огромную ( ) чёрную дыру в центр многих, если не всех, спиральных и эллиптических галактик. Например в центре нашей Галактики находится чёрная дыра Стрелец A* массой , вокруг которой вращается меньшая чёрная дыра.

  • Формирование чёрных дыр в момент Большого Взрыва в результате флуктуаций гравитационного поля и/или материи. Такие чёрные дыры называются первичными.

  • Возникновение чёрных дыр в ядерных реакциях высоких энергий — квантовые чёрные дыры.

2.2 Виды Черных дыр

Черные дыры звездных масс.

Чёрные дыры звёздных масс образуются как конечный этап жизни звезды, после полного выгорания термоядерного топлива и прекращения реакции звезда теоретически должна начать остывать, что приведёт к уменьшению внутреннего давления и сжатию звезды под действием гравитации. Сжатие может остановиться на определённом этапе, а может перейти в стремительный гравитационный коллапс. В зависимости от массы звезды и вращательного момента возможны следующие конечные состояния:

  • Погасшая очень плотная звезда, состоящая в основном, в зависимости от массы, из гелия, углерода, кислорода, неона, магния, кремния или железа (основные элементы перечислены в порядке возрастания массы остатка звезды).

  • Белый карлик.

  • Нейтронная звезда.

  • Чёрная дыра.

По мере увеличения массы остатка звезды происходит движение равновесной конфигурации вниз по изложенной последовательности. Вращательный момент увеличивает предельные массы на каждой ступени, но не качественно, а количественно (максимум в 2—3 раза).

Условия (главным образом, масса), при которых конечным состоянием эволюции звезды является чёрная дыра, изучены недостаточно хорошо, так как для этого необходимо знать поведение и состояния вещества при чрезвычайно высоких плотностях, недоступных экспериментальному изучению. Дополнительные сложности представляет моделирование звёзд на поздних этапах их эволюции из-за сложности возникающего химического состава и резкого уменьшения характерного времени протекания процессов. Достаточно упомянуть, что одни из крупнейших космических катастроф, вспышки сверхновых, возникают именно на этих этапах эволюции звёзд. Различные модели дают нижнюю оценку массы чёрной дыры, получающейся в результате гравитационного коллапса, от 2,5 до 5,6 масс Солнца. Радиус чёрной дыры при этом очень мал — несколько десятков километров.

Впоследствии чёрная дыра может разрастись за счёт поглощения вещества — как правило, это газ соседней звезды в двойных звёздных системах (столкновение чёрной дыры с любым другим астрономическим объектом очень маловероятно из-за её малого диаметра) (см. Приложение 1).

Процесс падения газа на любой компактный астрофизический объект, в том числе и на чёрную дыру, называется аккрецией1. При этом из-за вращения газа формируется аккреционный диск2, в котором вещество разгоняется до релятивистских скоростей, нагревается и в результате сильно излучает, в том числе и в рентгеновском диапазоне, что даёт принципиальную возможность обнаруживать такие аккреционные диски (и, следовательно, чёрные дыры) при помощи ультрафиолетовых и рентгеновских телескопов. Основной проблемой является малая величина и трудность регистрации отличий аккреционных дисков нейтронных звёзд и чёрных дыр, что приводит к неуверенности в идентификации астрономических объектов с чёрными дырами. Основное отличие состоит в том, что газ, падающий на все объекты, рано или поздно встречает твёрдую поверхность, что приводит к интенсивному излучению при торможении, но облако газа, падающее на чёрную дыру, из-за неограниченно растущего гравитационного замедления времени (красного смещения) просто быстро меркнет при приближении к горизонту событий. Столкновение чёрных дыр с другими звёздами, а также столкновение нейтронных звёзд, вызывающее образование чёрной дыры, приводит к мощнейшему гравитационному излучению, которое, как ожидается, можно будет обнаруживать в ближайшие годы при помощи гравитационных телескопов. В настоящее время есть сообщения о наблюдении столкновений в рентгеновском диапазоне.

Рассмотрим пример черной дыры звездной массы, известный галактический источник рентгеновского излучения в созвездии Лебедя, Лебедь X-1 (сокращённо Cyg X-1). Он был открыт в 1964 году во время суборбитального полёта и является одним из ярчайших источников рентгеновского излучения, обладая максимальной плотностью потока 2,3×10−23Вт×м−2×Гц−1. Лебедь X-1 был первым рентгеновским источником - кандидатом в чёрные дыры и является среди них одним из самых изученных объектов. Известно, что его масса составляет 8,7 масс Солнца, показано, что объект слишком компактен, чтобы быть каким-либо объектом кроме чёрной дыры. Радиус его горизонта событий составляет примерно 26 км.

Лебедь X-1 входит в состав массивной двойной системы, располагающейся на расстоянии примерно 6000 световых лет от Солнца. Также в систему входит голубой сверхгигант с переменным блеском, обозначенный HDE 226868. Объекты находятся на расстоянии 0,2 а.е. друг от друга, или 20 % расстояния от Земли до Солнца. Звёздный ветер сверхгиганта даёт материал для аккреционного диска вокруг рентгеновского источника. Внутренняя часть диска, разогретая до миллионов Кельвинов, генерирует наблюдаемое рентгеновское излучение. Часть вещества уносится в межзвёздное пространство двумя джетами3, бьющими перпендикулярно к диску.

Двойная система может принадлежать к звёздной ассоциации Лебедь OB3, что может означать, что возраст Лебедь X-1 составляет порядка пяти миллионов лет и он сформировался из звезды с массой более 40 солнечных. Звезда лишилась большей части вещества, скорее всего из-за звёздного ветра. Если бы после звезда взорвалась как сверхновая, взрыв с большой вероятностью выбросил бы звёздный остаток из системы. Это значит, что звезда сколлапсировала непосредственно в чёрную дыру.

Сверхмассивные черные дыры.

Сверхмасси́вная чёрная дыра́ — это чёрная дыра с массой около 105—1010 масс Солнца. Сверхмассивные чёрные дыры были обнаружены в центре многих галактик, включая Млечный Путь (см. Приложение 2).

Сверхмассивные чёрные дыры имеют специфические свойства, отличающие их от меньших чёрных дыр:

  • Парадоксально, но средняя плотность сверхмассивной чёрной дыры может быть очень мала (даже меньше плотности воздуха).

  • Приливные силы около горизонта событий значительно слабее. Из-за того, что центральная сингулярность расположена настолько далеко от горизонта, гипотетический космонавт, путешествующий к центру чёрной дыры, не почувствует действия экстремальных приливных сил до тех пор, пока не погрузится в неё очень глубоко.

Общепринятой теории образования черных дыр подобной массы еще нет. Существует несколько гипотез, наиболее очевидной из которых является гипотеза, описывающая постепенное наращивание массы при аккреции вещества чёрной дыры звёздной массы. Другая гипотеза предполагает, что сверхмассивные чёрные дыры образуются при коллапсе больших газовых облаков и их превращении в релятивистскую звезду массой в несколько сотен тысяч масс Солнца или больше. Такая звезда быстро становится нестабильной к радиальным возмущениям в связи с процессами образования электронно-позитронных пар, происходящими в её ядре, и может сколлапсировать сразу в чёрную дыру. При этом коллапс идёт минуя стадию сверхновой, при которой взрыв выбросил бы большую часть массы, что не позволило бы образоваться сверхмассивной чёрной дыре. Еще одна модель предполагает, что подобные чёрные дыры могли образоваться при коллапсе плотных звёздных кластеров, когда отрицательная теплоемкость системы приводит дисперсию скорости в ядре к релятивистским значениям. Наконец, первичные чёрные дыры могли образоваться из начальных возмущений сразу после Большого взрыва.

Трудность образования сверхмассивной чёрной дыры заключается в том, что достаточное для этого количество вещества должно быть сконцентрировано в относительно небольшом объёме. Для этого у материи должен быть очень малый начальный угловой момент — то есть медленное вращение. Обычно скорость процесса аккреции на чёрную дыру лимитируется именно угловым моментом падающей материи, который должен быть в основном передан обратно наружу, что ограничивает скорость роста массы чёрной дыры.

Первичные черные дыры.

Процессы образования первичных черных дыр с массой, меньшей солнечной, могли происходить лишь в адронную эру4, когда средняя плотность вещества была достаточно высока. Первичных черных дыр образуется тем больше, чем больше была амплитуда начальных неоднородностей и чем “мягче” уравнения состояния вещества в момент их образования. Дальнейшая судьба первичных черных дыр зависит от их массы. Черные дыры с массой от 1015 до 1033 г могли бы доживать до настоящего времени и оказаться “живыми свидетелями” процессов, происходивших во времени 10-23—10-5 с после “большого взрыва”. Черные дыры с массами М1014,5 должны испаряться в настоящую эпоху. Как только масса становится меньше 1014 г, черная дыра начинает испускать адроны. Первичные черные дыры меньшей массы должны были взорваться вскоре после своего возникновения.

Квантовые чёрные дыры.

Предполагается, что в результате ядерных реакций могут возникать устойчивые микроскопические чёрные дыры, так называемые квантовые чёрные дыры. Для математического описания таких объектов необходима квантовая теория гравитации. Однако из общих соображений весьма вероятно, что спектр масс чёрных дыр дискретен и существует минимальная чёрная дыра — планковская чёрная дыра. Её масса порядка 10−5 г, радиус — 10−35 м. Комптоновская длина волны5 планковской чёрной дыры по порядку величины равна её гравитационному радиусу.

Таким образом, все «элементарные объекты» можно разделить на элементарные частицы (их длина волны больше их гравитационного радиуса) и чёрные дыры (длина волны меньше гравитационного радиуса). Планковская чёрная дыра является пограничным объектом, для неё можно встретить название максимон6, указывающее на то, что это самая тяжёлая из возможных элементарных частиц. Другой иногда употребляемый для её обозначения термин — планкеон.

Даже если квантовые чёрные дыры существуют, время их существования крайне мало, что делает их непосредственное обнаружение очень проблематичным.

В последнее время предложены эксперименты с целью обнаружения свидетельств появления чёрных дыр в ядерных реакциях. Однако для непосредственного синтеза чёрной дыры в ускорителе необходима недостижимая на сегодня энергия 1026 эВ. По-видимому, в реакциях сверхвысоких энергий могут возникать виртуальные промежуточные чёрные дыры.

Эксперименты по протон-протонным столкновениям с полной энергией 7 ТэВ на Большом Адронном Коллайдере показали, что этой энергии недостаточно для образования микроскопических чёрных дыр.