Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
82
Добавлен:
15.06.2014
Размер:
310.78 Кб
Скачать

КОДИФИКАТОР

ЭЛЕМЕНТОВ СОДЕРЖАНИЯ ДИСЦИПЛИНЫ «ФИЗИКА» ЦИКЛА ОБЩИХ МАТЕМАТИЧЕСКИХ И ЕСТЕСТВЕННОНАУЧНЫХ ДИСЦИПЛИН ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

В кодификаторе зафиксирована преемственность между содержанием дисциплины «Физика» в государственных образовательных стандартах (ГОС) высшего профессионального образования (ВПО) и аттестационных педагогических аттестационных материалов (АПИМ), используемых в рамках Интернет-экзамена в сфере профессионального образования. Кодификатор отображает содержание дисциплины в ГОС и содержит контролируемое содержание дисциплины, перечень контролируемых учебных элементов и необходимость составления заданий АПИМ. Преемственность дидактических единиц, зафиксированных в кодификаторе, положена в основу содержания АПИМ единого Федерального банка заданий, используемого для проведения Интернет-экзамена в сфере профессионального образования.

Контролируемое содержание дисциплины включает код элемента содержания и наименование элемента содержания (темы задания). Первый разряд в записи кода элемента содержания указывает на номер группы заданий, связанной с объемом часов в ГОС, выделяемых на изучение дисциплины. В дисциплине «Физика» предложено выделить три группы (1 группа – от 100 до 279 часов, 2 группа – от 280 до 699 часов, 3 группа – от 700 до 1000 часов). Второй разряд в записи кода элемента содержания указывает на номер дидактической единицы (раздела) дисциплины, а третий разряд в записи кода элемента содержания идентифицирует номер темы задания. Например, код элемента содержания 2.01.04 указывает на то, что предложенный элемент содержания принадлежит второй группе с объемом часов от 280 до 699 часов, первой дидактической единице (ДЕ) «Механика» и четвертой теме в этой ДЕ, которая называется «Динамика вращательного движения». Все коды элементов содержания и их наименование распределяются в предложенном порядке для каждой дидактической единицы.

Перечень контролируемых учебных элементов отражает требования к знаниям, которые студент должен приобрести в результате освоения дисциплины или отдельных ее разделов. При этом уровень сложности заданий должен быть БАЗОВЫМ, то есть, все предлагаемые на конкурс задания должны контролировать обязательную подготовку студентов на уровне требований, задаваемом государственными образовательными стандартами.

Необходимость составления АПИМ представлена степенью потребности в разработке заданий по указанной теме (2 – высокая, то есть заданий по данной теме крайне недостаточно, 1 – средняя, то есть существует необходимость дополнения имеющегося банка заданий) по каждой из указанных форм.

ВО – задания с выбором одного правильного ответа из предложенных;

МВ – задания с выбором нескольких правильных ответов из предложенных;

УП – задания на установление правильной последовательности;

УС – задания на установление соответствия двух списков;

КО – задания с кратким ответом (в виде целого числа).

Пустая ячейка указывает на то, что задания такой формы на данный момент в банке АПИМ отсутствуют и могут быть разработаны участниками конкурса. Кроме того, участники конкурса могут предложить и собственные элементы содержания дисциплины (темы заданий), продолжая список предложенных тем с заполнением всех полей кодификатора. Обязательным условием при этом является разработка участниками не менее 11 заданий по каждой выбранной теме.

Оформление заданий осуществляется в соответствии с методическими указаниями «Требования к оформлению педагогических измерительных материалов для проведения Интернет-экзамена в сфере профессионального образования». (Методические указания размещены на сайте www.fepo.ru в разделе «Методическая поддержка».)

Контролируемое содержание дисциплины

Перечень контролируемых учебных элементов

Студент должен

Необходимость составления заданий АПИМ

Old(корзина-old)+new

Код эмента содежания

Наименование элемента содержания (тема)

ВО

МВ

УП

ЧС

КО

1. МЕХАНИКА

1.1.1

Кинематика точки и поступательного движения твёрдого тела. Динамика поступательного движения.

знать: скорость, ускорение, составляющие ускорения – тангенциальное и нормальное ускорения; равноускоренное движение; законы Ньютона, сила, масса, импульс; силы в механике (тяжести, трения, упругости), закон всемирного тяготения, движение по окружности.

уметь: применять законы кинематики и динамики в условиях конкретной задачи; использовать физические формулы для анализа функциональных зависимостей между различными физическими величинами; определять направления векторных величин; анализировать информацию, представленную в виде графика, рисунка, делать вывод о характере изменения искомой величины.

1

1.1.2

Кинематика вращательного движения

знать: угловое перемещение, угловая скорость, угловое ускорение; связь линейных и угловых величин.

уметь: применять законы кинематики вращательного движения в условиях конкретной задачи; использовать физические формулы для анализа функциональных зависимостей между различными физическими величинами; определять направления векторных величин; анализировать информацию, представленную в виде графика, рисунка, делать вывод о характере изменения искомой величины

1

1.1.3.

Динамика вращательного движения

знать: момент инерции, момент импульса, момент силы; основной закон динамики вращательного движения.

уметь: применять законы динамики вращательного движения в условиях конкретной задачи; использовать физические формулы для анализа функциональных зависимостей между различными физическими величинами; определять направления векторных величин; анализировать информацию, представленную в виде графика, рисунка, делать вывод о характере изменения искомой величины.

1

1.1.4.

Работа. Энергия. Законы сохранения в механике.

знать: работа силы; кинетическая и потенциальная энергия; закон сохранения механической энергии; закон сохранения импульса; мощность; работа и мощность вращательного движения, кинетическая энергия вращательного движения; закон сохранения момента импульса.

уметь: применять законы сохранения механической энергии, импульса, момента импульса в условиях конкретной задачи; использовать физические формулы для анализа функциональных зависимостей между различными физическими величинами; анализировать информацию, представленную в виде графика, рисунка, делать вывод о характере изменения искомой величины.

1

2.1.1

Кинематика поступательного и вращательного движения

знать: скорость, ускорение, составляющие ускорения – тангенциальное и нормальное; угловая скорость, угловое ускорение; связь линейных и угловых величин.

уметь: применять законы кинематики в условиях конкретной задачи; использовать физические формулы для анализа функциональных зависимостей между различными физическими величинами; использовать физические формулы для вычисления заданных величин; определять направления векторных величин; анализировать информацию, представленную в виде графика, рисунка, делать вывод о характере изменения искомой величины; использовать математический аппарат (вычисление производных, интегралов, операции с векторами) для решения физических задач.

1

2.1.2

Динамика поступательного движения

знать: законы Ньютона, сила, масса, импульс; инерциальные и неинерциальные системы отсчета; силы в механике (тяжести, трения, упругости), закон всемирного тяготения, движение по окружности; II закон Ньютона для системы материальных точек, центр масс системы материальных точек, закон движения центра масс.

уметь: применять законы динамики в условиях конкретной задачи; использовать физические формулы для анализа функциональных зависимостей между различными физическими величинами; использовать физические формулы для вычисления заданных величин; определять направления векторных величин; анализировать информацию, представленную в виде графика, рисунка, делать вывод о характере изменения искомой величины; использовать математический аппарат (вычисление производных, интегралов, операции с векторами) для решения физических задач.

1

2.1.3.

Динамика вращательного движения

знать: момент инерции, момент импульса, момент силы; основной закон динамики вращательного движения.

уметь: применять законы динамики вращательного движения в условиях конкретной задачи; использовать физические формулы для анализа функциональных зависимостей между различными физическими величинами; использовать физические формулы для вычисления заданных величин; определять направления векторных величин; анализировать информацию, представленную в виде графика, рисунка, делать вывод о характере изменения искомой величины; использовать математический аппарат (вычисление производных, интегралов, операции с векторами) для решения физических задач

1

2.1.4.

Работа. Энергия.

знать: работа силы; кинетическая и потенциальная энергия; связь силы и потенциальной энергии; мощность; работа и мощность вращательного движения, кинетическая энергия вращательного движения.

уметь: применять законы механики в условиях конкретной задачи; использовать физические формулы для анализа функциональных зависимостей между различными физическими величинами; использовать физические формулы для вычисления заданных величин; анализировать информацию, представленную в виде графика, рисунка, делать вывод о характере изменения искомой величины; использовать математический аппарат (вычисление производных, интегралов, операции с векторами) для решения физических задач.

1

2.1.5.

Законы сохранения в механике

знать: закон сохранения импульса; закон сохранения момента импульса; закон сохранения механической энергии.

уметь: применять законы сохранения в условиях конкретной задачи механики; использовать физические формулы для анализа функциональных зависимостей между различными физическими величинами; использовать физические формулы для вычисления заданных величин; определять направления векторных величин; анализировать информацию, представленную в виде графика, рисунка, делать вывод о характере изменения искомой величины; использовать математический аппарат (вычисление производных, интегралов, операции с векторами) для решения физических задач

1

2.1.6.

Элементы специальной теории относительности

знать: постулаты СТО; преобразования Лоренца, следствия из преобразований Лоренца: сокращение длины, замедление времени, преобразование скоростей; релятивистский импульс, масса; полная энергия, энергия покоя, кинетическая энергия.

уметь: применять законы релятивистской механики в условиях конкретной задачи; использовать физические формулы для анализа функциональных зависимостей между различными физическими величинами; использовать физические формулы для вычисления заданных величин; анализировать информацию, представленную в виде графика, рисунка, делать вывод о характере изменения искомой величины

1

3.1.1.

Кинематика поступательного и вращательного движения

знать: скорость, ускорение, составляющие ускорения – тангенциальное и нормальное; угловая скорость, угловое ускорение; связь линейных и угловых величин.

уметь: применять законы кинематики в условиях конкретной задачи; использовать физические формулы для анализа функциональных зависимостей между различными физическими величинами; использовать физические формулы для вычисления заданных величин; определять направления векторных величин; анализировать информацию, представленную в виде графика, рисунка, делать вывод о характере изменения искомой величины; использовать математический аппарат (вычисление производных, интегралов, операции с векторами) для решения физических задач.

1

3.1.2

Динамика точки и поступательного движения твердого тела

знать: законы Ньютона, сила, масса, импульс; инерциальные и неинерциальные системы отсчета; силы в механике (тяжести, трения, упругости), закон всемирного тяготения, движение по окружности; II закон Ньютона для системы материальных точек, закон сохранения импульса; центр масс системы материальных точек, закон движения центра масс.

уметь: применять законы динамики в условиях конкретной задачи; использовать физические формулы для анализа функциональных зависимостей между различными физическими величинами; использовать физические формулы для вычисления заданных величин; определять направления векторных величин; анализировать информацию, представленную в виде графика, рисунка, делать вывод о характере изменения искомой величины; использовать математический аппарат (вычисление производных, интегралов, операции с векторами) для решения физических задач.

1

3.1.3.

Динамика вращательного движения твердого тела

знать: момент инерции, момент импульса, момент силы; основной закон динамики вращательного движения.

уметь: применять законы динамики вращательного движения в условиях конкретной задачи; использовать физические формулы для анализа функциональных зависимостей между различными физическими величинами; использовать физические формулы для вычисления заданных величин; определять направления векторных величин; анализировать информацию, представленную в виде графика, рисунка, делать вывод о характере изменения искомой величины; использовать математический аппарат (вычисление производных, интегралов, операции с векторами) для решения физических задач.

1

3.1.4.

Работа. Энергия. Закон сохранения механической энергии.

знать: работа силы; кинетическая и потенциальная энергия; связь силы и потенциальной энергии; закон сохранения механической энергии; мощность; работа и мощность вращательного движения, кинетическая энергия вращательного движения.

уметь: применять закон сохранения механической энергии в условиях конкретной задачи; использовать физические формулы для анализа функциональных зависимостей между различными физическими величинами; использовать физические формулы для вычисления заданных величин; анализировать информацию, представленную в виде графика, рисунка, делать вывод о характере изменения искомой величины; использовать математический аппарат (вычисление производных, интегралов, операции с векторами) для решения физических задач.

1

3.1.5.

Законы сохранения момента импульса и энергии

знать: закон сохранения момента импульса.

уметь: применять закон сохранения момента импульса в условиях конкретной задачи; использовать физические формулы для анализа функциональных зависимостей между различными физическими величинами; использовать физические формулы для вычисления заданных величин; определять направления векторных величин; анализировать информацию, представленную в виде графика, рисунка, делать вывод о характере изменения искомой величины; использовать математический аппарат (вычисление производных, интегралов, операции с векторами) для решения физических задач.

1

3.1.6.

Элементы специальной теории относительности

знать: постулаты СТО; преобразования Лоренца, следствия из преобразований Лоренца: сокращение длины, замедление времени, преобразование скоростей; релятивистский импульс, масса; полная энергия, энергия покоя, кинетическая энергия.

уметь: применять законы релятивистской механики в условиях конкретной задачи; использовать физические формулы для анализа функциональных зависимостей между различными физическими величинами; использовать физические формулы для вычисления заданных величин; анализировать информацию, представленную в виде графика, рисунка, делать вывод о характере изменения искомой величины.

1

2. МОЛЕКУЛЯРНАЯ (СТАТИСТИЧЕСКАЯ) ФИЗИКА И ТЕРМОДИНАМИКА

1.2.1.

Внутренняя энергия идеального газа

знать: внутренняя энергия идеального газа; уравнение состояния идеального газа.

уметь: анализировать представленную информацию, определять изменения внутренней энергии газа.

1

1.2.2.

Первое начало термодинамики

знать: I начало термодинамики. Изопроцессы (изотермический, изобарный, изохорный, адиабатный). Работа при изопроцессах;

уметь: анализировать информацию, представленную в виде графика, диаграммы; вычислять работу в изопроцессах.

1

1

1.2.3.

Средняя энергия молекул

знать: степени свободы молекул (поступательные, вращательные, колебательные); число степеней свободы одно-, двух-, и многоатомных молекул; закон о равномерном распределении энергии по степеням свободы; теплоемкость газов;

уметь: вычислять среднюю кинетическую энергию молекул, теплоемкости и их отношения.

1

1.2.4.

Цикл Карно

знать: цикл Карно; КПД цикла Карно.

уметь: определять изменения КПД цикла при Карно изменении его параметров.

1

2.2.1.

Распределения Максвелла и Больцмана

знать: распределение молекул идеального газа по скоростям и компонентам скорости (распределения Максвелла); характеристические скорости; зависимость распределения Максвелла от температуры.

уметь: анализировать представленную информацию, делать выводы на основе данных, представленных графиком, диаграммой, рисунком, схемой и т.д.

1

2.2.2.

Средняя энергия молекул

знать: степени свободы молекул (поступательные, вращательные, колебательные); число степеней свободы одно-, двух-, и многоатомных молекул; закон о равномерном распределении энергии по степеням свободы; теплоемкость газов;

уметь: вычислять среднюю кинетическую энергию молекул, теплоемкости Cv и Cp и их отношения.

1

2.2.3.

Второе начало термодинамики. Энтропия. Циклы

знать: энтропия; характер изменения энтропии в различных процессах; цикл Карно в координатах (T,S).

уметь: анализировать информацию, представленную в виде графика.

1

2.2.4.

I начало термодинамики. Работа при изопроцессах.

знать: I начало термодинамики . Изопроцессы (изотермический, изобарный, изохорный, адиабатный). Работа при изопроцессах;

уметь: анализировать информацию, представленную в виде графика, диаграммы; вычислять работу в изопроцессах.

1

3.2.1.

Распределения Максвелла и Больцмана

знать: распределение молекул идеального газа по скоростям и компонентам скорости (распределения Максвелла); характеристические скорости; зависимость распределения Максвелла от температуры.

уметь: анализировать представленную информацию, делать выводы на основе данных, представленных графиком, диаграммой, рисунком, схемой и т.д.

1

3.2.2.

Внутренняя энергия и теплоемкость газов

знать: теплоемкость, теплоемкость идеального газа, молярная теплоемкость, Cv и Cp, число степеней свободы, число и характер степеней свободы молекул.

уметь: анализировать информацию, представленную в виде графика, определять число степеней свободы одно-, двух- и трехатомной молекулы.

1

3.2.3.

Второе начало термодинамики. Энтропия. Циклы

знать: энтропия; характер изменения энтропии в различных процессах; цикл Карно в координатах (T,S).

уметь: анализировать информацию, представленную в виде графика.

1

3.2.4.

I начало термодинамики. Работа при изопроцессах

знать: I начало термодинамики . Изопроцессы (изотермический, изобарный, изохорный, адиабатный). Работа при изопроцессах;

уметь: анализировать информацию, представленную в виде графика, диаграммы; вычислять работу в изопроцессах.

1

3. ЭЛЕКТРИЧЕСТВО И МАГНЕТИЗМ

1.3.1.

Электростатическое поле. Поле точечного заряда. Принцип суперпозиции

знать: характер электростатического поля точечного заряда, равномерно заряженной сферической поверхности, равномерно заряженной бесконечной плоскости; методику построения вектора напряженности электростатического поля для системы зарядов.

уметь: находить направление напряженности электростатического поля точечного заряда, заряженной сферы, бесконечной плоскости в произвольной точке.

1

1

1.3.2.

Работа по перемещению заряда в электростатическом поле

знать: работа по перемещению заряда в электростатическом поле.

уметь: анализировать представленную графическую информацию, определять величину работы по перемещению заряда в электростатическом поле.

1

1.3.3.

Законы постоянного тока

знать: закон Ома для участка цепи, закон Ома для полной цепи. Закон Джоуля-Ленца. Мощность во внешней цепи.

уметь: находить работу, мощность тока из графиков характеристик электрических цепей; по графику вольтамперной характеристики оценивать величину сопротивления.

1

1.3.4.

Магнитное поле системы проводников с токами. Принцип суперпозиции полей

знать: вектор магнитной индукции; характер магнитного поля бесконечно длинного проводника с током; принцип суперпозиции полей, направление силы Ампера.

уметь: применять принцип суперпозиции полей, находить направление вектора и силы Ампера в условиях конкретной задачи.

1

1.3.5

Действие магнитного поля на заряды. Сила Лоренца

знать: сила Лоренца; правило для нахождения направления силы Лоренца.

уметь: применять это правило в условиях конкретной задачи.

1

1.3.6.

Явление электромагнитной индукции

знать: закон электромагнитной индукции и самоиндукции, правило Ленца.

уметь: анализировать информацию, представленную в виде графиков; изменения магнитного потока от времени определять знак и величину ЭДС индукции.

1

1

2.3.1.

Электростатическое поле в вакууме

знать: поток вектора напряженности электростатического поля через поверхность; теорема Гаусса для электростатического поля в вакууме; характер электростатического поля точечного заряда, диполя, равномерно заряженной сферической поверхности, равномерно заряженной бесконечной плоскости; связь напряженности поля и потенциал; дипольный электрический момент; момент сил, действующий на диполь в электростатическом поле; работа по перемещению заряда в электростатическом поле; энергия и объемная плотность энергии электростатического поля.

уметь: анализировать представленную информацию из графиков и диаграмм; применять теорему Гаусса в условиях конкретной задачи; находить направление напряженности электростатического поля точечного заряда, диполя, заряженной сферы, бесконечной плоскости в произвольной точке; используя связь напряженности и потенциала, находить направление градиента потенциал; находить направление момента сил, действующего на диполь в электростатическом поле; определять знак и величину работы по перемещению заряда в электростатическом поле; определять характер изменения энергии (объемной плотности энергии) электростатического поля при изменении параметров.

1

2.3.2.

Законы постоянного тока

знать: плотность и сила тока; действие электрического тока; закон Ома для участка цепи, закон Ома для полной цепи. Закон Ома в дифференциальной форме.

Закон Джоуля-Ленца. ЭДС и работа источника тока. Мощность во внешней цепи. Правила Кирхгофа.

уметь: находить работу, мощность тока из графиков характеристик электрических цепей; по графику вольтамперной характеристики оценивать величину сопротивления

1

2.3.3.

Магнитостатика

знать: характер магнитного поля проводников с током; принцип суперпозиции полей; закон Био- Савара-Лапласа; сила Ампера, сила Лоренца; магнитный поток; магнитный дипольный момент; момент сил, действующий на диполь в магнитном поле; работу сил поля по перемещению проводника с током.

уметь: находить направление вектора магнитной индукции поля проводника с током в произвольной точке; применять принцип суперпозиции в условиях конкретной задачи; определять величину и направление сил Ампера и Лоренца; определять величину и направление момента сил, действующего на диполь в магнитом поле; определять величину работы сил поля по перемещению проводника с током; определять размерности физических величина на основе законов магнитостатики.

1

2.3.4.

Явление электромагнитной индукции

знать: величину магнитного потока через проводящий контур; характер изменения величины магнитной индукции от расстояния до бесконечно длинного проводника с током; закон электромагнитной индукции и самоиндукции, правило Ленца.

уметь: анализировать информацию, представленную в виде графиков; определять знак и величину изменения магнитного потока, пронизывающего проводящий контур; определять условия возникновения ЭДС индукции и самоиндукции, направление индукционного тока; определять размерности физических величина на основе законов электромагнетизма.

1

1

2.3.5.

Электрические и магнитные свойства вещества

знать: классификация диэлектриков (полярные, неполярные диэлектрики; сегнетоэлектрики); электрические свойства атомов и молекул диэлектриков; поведение образца диэлектрика во внешнем электрическом поле; зависимость диэлектрической восприимчивости полярных и неполярных диэлектриков от температуры; особенности свойств сегнетоэлектиков; классификация магнетиков (диа-, пара- и ферромагнетики); магнитные свойства атомов и молекул магнетиков; поведение образца магнетика во внешнем магнитном поле; зависимость магнитной проницаемости (восприимчивости) диа- и парамагнетиков от температуры; особенности свойств ферромагнетиков.

уметь: анализировать информацию, представленную в графической форме.

1

2.3.6.

Уравнения Максвелла

знать: общий вид системы уравнений Максвелла для электромагнитного поля; физический смысл каждого уравнения системы.

уметь: анализировать информацию, представленную в виде системы уравнений Максвелла, записанной для частного случая.

1

3.3.1.

Теорема Гаусса для электростатического поля в вакууме

знать: поток вектора напряженности электростатического поля через поверхность; теорема Гаусса для электростатического поля в вакууме. характер электростатического поля точечного заряда, диполя, равномерно заряженной сферической поверхности, равномерно заряженной бесконечной плоскости; связь напряженности поля и потенциал; дипольный электрический момент; момент сил, действующий на диполь в электростатическом поле; работа по перемещению заряда в электростатическом поле; энергия и объемная плотность энергии электростатического поля.

уметь: анализировать представленную информацию из графиков и диаграмм; применять теорему Гаусса в условиях конкретной задачи; находить направление напряженности электростатического поля точечного заряда, диполя, заряженной сферы, бесконечной плоскости в произвольной точке; используя связь напряженности и потенциала, находить направление градиента потенциал; находить направление момента сил, действующего на диполь в электростатическом поле; определять знак и величину работы по перемещению заряда в электростатическом поле; определять характер изменения энергии (объемной плотности энергии) электростатического поля при изменении параметров.

1

1

3.3.2.

Законы постоянного тока

знать: плотность и сила тока; действие электрического тока; закон Ома для участка цепи, закон Ома для полной цепи. Закон Ома в дифференциальной форме.

Закон Джоуля-Ленца. ЭДС и работа источника тока. Мощность во внешней цепи. Правила Кирхгофа.

уметь: находить работу, мощность тока из графиков характеристик электрических цепей; по графику вольтамперной характеристики оценивать величину сопротивления.

1

3.3.3.

Магнитостатика

знать: характер магнитного поля проводников с током; принцип суперпозиции полей; закон Био- Савара-Лапласа; сила Ампера, сила Лоренца; магнитный поток; магнитный дипольный момент; момент сил, действующий на диполь в магнитном поле; работу сил поля по перемещению проводника с током.

уметь: находить направление вектора магнитной индукции поля проводника с током в произвольной точке; применять принцип суперпозиции в условиях конкретной задачи; определять величину и направление сил Ампера и Лоренца; определять величину и направление момента сил, действующего на диполь в магнитом поле; определять величину работы сил поля по перемещению проводника с током; определять размерности физических величина на основе законов магнитостатики.

1

3.3.4.

Электрическое и магнитное поле в веществе

знать: - вектор поляризации (поляризованность) диэлектрика, диэлектричекая воприимчивость , диэлектрическая проницаемость , намагниченность магнетика, магнитная восприимчивость , магнитная проницаемость ; характер зависимости (T), (T) для различных типов диэлектриков и магнетиков.

уметь: анализировать информацию, представленную в виде графика.

1

3.3.5.

Свойства электрических и магнитных полей

знать: классификация диэлектриков (полярные, неполярные диэлектрики; сегнетоэлектрики); электрические свойства атомов и молекул диэлектриков; поведение образца диэлектрика во внешнем электрическом поле; зависимость диэлектрической восприимчивости полярных и неполярных диэлектриков от температуры; особенности свойств сегнетоэлектиков; классификация магнетиков (диа-, пара- и ферромагнетики); магнитные свойства атомов и молекул магнетиков; поведение образца магнетика во внешнем магнитном поле; зависимость магнитной проницаемости (восприимчивости) диа- и парамагнетиков от температуры; особенности свойств ферромагнетиков.

уметь: анализировать информацию, представленную в графической форме.

1

1

3.3.6.

Уравнения Максвелла

знать: общий вид системы уравнений Максвелла для электромагнитного поля; физический смысл каждого уравнения системы.

уметь: анализировать информацию, представленную в виде системы уравнений Максвелла, записанной для частного случая.

1

4. МЕХАНИЧЕСКИЕ И ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ И ВОЛНЫ

1.4.1

Уравнение гармонических колебаний

знать: уравнение гармонических колебаний; величины, характеризующие колебания.

уметь: анализировать запись уравнения гармонических колебаний, если известны амплитуда, период (частота) колебаний и состояние колеблющейся системы в начальный момент времени

1

1.4.2.

Волны

знать: волны; волновая поверхность; классификация волн: продольные и поперечные, плоские и сферические; условия возникновения продольных и поперечных волн.

1

1.4.3

Уравнения свободных и вынужденных колебаний

знать: дифференциальные уравнения колебаний различного вида и природы.

1

1

1.4.4

Уравнение волны

знать: уравнение плоской синусоидальной волны; параметры, входящие в уравнение волны (частота, циклическая частота, период, длина волны, волновое число), и соотношения между ними.

уметь: вычислять частоту, циклическую частоту, период, длину волны, волновое число по уравнению волны.

1

2.4.1.

Свободные и вынужденные колебания

знать: формулы для смещения, скорости, ускорения и их взаимосвязь при гармонических колебаниях; зависимость частоты собственных колебаний от параметров колебательных систем; виды и величину энергии для механических и электрических колебательных систем; уравнение затухающих колебаний и его параметры (коэффициент затухания, время релаксации); условия резонанса.

уметь: анализировать информацию, представленную в виде графика; вычислять параметры колебательных систем; определять изменение характера затухающих колебаний при изменении параметров системы; определять энергию колебательной системы.

1

2.4.2.

Сложение гармонических колебаний

знать: метод векторных диаграмм при сложении колебаний одного направления; метод векторных диаграмм для сложения напряжений при вынужденных колебаниях в контуре из последовательно соединенных сопротивления, индуктивности и емкости.

уметь: вычислять амплитуду результирующего колебания (при сложении одинаково направленных колебаний одинаковой частоты), пользуясь методом векторных диаграмм; вычислять амплитуду результирующего напряжения вынужденных колебаний в последовательном контуре, пользуясь методом векторных диаграмм.

1

2.4.3

Волны. Уравнение волны

знать: уравнение плоской синусоидальной волны; параметры, входящие в уравнение волны (частота, циклическая частота, период, длина волны, волновое число), и соотношения между ними; закон преломления волн на границе раздела сред;

уметь: вычислять частоту, циклическую частоту, период, длину волны, волновое число по уравнению волны; вычислять скорости распространения волн по закону преломлении; определять размерность физических величин на основе их определений.

1

2.4.4

Энергия волны. Перенос энергии волной

знать: электромагнитная волна; вектор плотности потока энергии электромагнитной волны (вектор Пойнтинга) и упругих волн; единицы измерения объемной плотности энергии и плотности потока энергии; функциональную зависимость объемной плотности энергии.

уметь: анализировать информацию, представленную в виде рисунка; находить направление вектора плотности потока энергии электромагнитной волны в условиях конкретной задачи; определять плотность потока энергии при изменении параметров волны; определять размерность физических величин.

1

3.4.1

Свободные и вынужденные колебания

знать: формулы для смещения, скорости, ускорения и их взаимосвязь при гармонических колебаниях; зависимость частоты собственных колебаний от параметров колебательных систем; виды и величину энергии для механических и электрических колебательных систем; уравнение затухающих колебаний и его параметры (коэффициент затухания, время релаксации); условия резонанса.

уметь: анализировать информацию, представленную в виде графика; вычислять параметры колебательных систем; определять изменение характера затухающих колебаний при изменении параметров системы; определять энергию колебательной системы.

1

3.4.2

Сложение гармонических колебаний

знать: метод векторных диаграмм при сложении колебаний взаимно перпендикулярных направлений (фигуры Лиссажу); метод векторных диаграмм для сложения напряжений при вынужденных колебаниях в контуре из последовательно соединенных сопротивления, индуктивности и емкости.

уметь: определять соотношение частот по фигурам Лиссажу; вычислять амплитуду результирующего напряжения вынужденных колебаний в последовательном контуре, пользуясь методом векторных диаграмм;

1

3.4.3

Волны. Уравнение волны

знать: уравнение плоской синусоидальной волны; параметры, входящие в уравнение волны (частота, циклическая частота, период, длина волны, волновое число), и соотношения между ними; закон преломления волн на границе раздела сред;

уметь: вычислять частоту, циклическую частоту, период, длину волны, волновое число по уравнению волны; вычислять скорости распространения волн по закону преломлении; определять размерность физических величин на основе их определений.

1

3.4.4

Энергия волны. Перенос энергии волной

знать: электромагнитная волна; вектор плотности потока энергии электромагнитной волны (вектор Пойнтинга) и упругих волн; единицы измерения объемной плотности энергии и плотности потока энергии; функциональную зависимость объемной плотности энергии.

уметь: анализировать информацию, представленную в виде рисунка; находить направление вектора плотности потока энергии электромагнитной волны в условиях конкретной задачи; определять плотность потока энергии при изменении параметров волны; определять размерность физических величин.

1

5. ВОЛНОВАЯ И КВАНТОВАЯ ОПТИКА

1.5.1.

Волновая природа света

знать: физические явления, объясняемые на основе волновых представлений о свете.

1

1.5.2.

Интерференция света

знать: явления дифракции и интерференции света; условие максимумов и минимумов, оптическую разность хода.

уметь: анализировать информацию, представленную в виде рисунка; определять на основе расчета оптической разности хода условие max или min.

1

1.5.3

Фотоэффект

знать: тепловое излучение, его характеристики; законы теплового излучения: закон Стефана – Больцмана, закон смещения Вина; законы фотоэффекта.

уметь: анализировать информацию, представленную в виде графика; применять законы теплового излучения в условиях конкретной задачи; применять законы фотоэффекта в условиях конкретной задачи.

1

1.5.4

Тепловое излучение

знать: - характеристики теплового излучения: излучательная способность (спектральная плотность энергетической светимости), энергетическая светимость, поглощательная способность;

- законы теплового излучения: закон Стефана-Больцмана, закон смещения Вина.

уметь: - анализировать информацию, представленную в виде графиков.

1

2.5.1.

Интерференция и дифракция света

знать: явления дифракции и интерференции света; условие главных максимумов дифракции на дифракционной решетке интерференция в тонких пленках, условие максимумов и минимумов.

уметь: анализировать информацию, представленную в виде рисунка; определять качественное изменение интерференционной картины при изменении параметров тонкой пленки.

1

2.5.2.

Поляризация и дисперсия света

знать: явление поляризации света; закон Малюса; поляризация света при отражении света от диэлектриков (угол Брюстера).

уметь: применять закон Малюса в условиях конкретной задачи; определять углы падения, преломления и отражения по углу Брюстера.

1

2.5.3

Тепловое излучение. Фотоэффект

знать: тепловое излучение, его характеристики; законы теплового излучения: закон Стефана – Больцмана, закон смещения Вина; законы фотоэффекта.

уметь: анализировать информацию, представленную в виде графика; применять законы теплового излучения в условиях конкретной задачи; применять законы фотоэффекта в условиях конкретной задачи.

1

2.5.4

Эффект Комптона. Световое давление

знать: эффект Комптона; объяснение эффекта Комптона на основе корпускулярных представлений о свете, зависимость светового давления от свойств поверхностей и параметров светового потока.

уметь: анализировать информацию, представленную в виде рисунка; применять закон сохранения импульса в условиях конкретной задачи.

1

3.5.1

Интерференция и дифракция света

знать: явления дифракции и интерференции света; условие главных максимумов дифракции на дифракционной решетке интерференция в тонких пленках, условие максимумов и минимумов.

уметь: анализировать информацию, представленную в виде рисунка; определять качественное изменение интерференционной картины при изменении параметров тонкой пленки.

1

3.5.2

Поляризация и дисперсия света

знать: явление поляризации света; закон Малюса; поляризация света при отражении света от диэлектриков (угол Брюстера).

уметь: применять закон Малюса в условиях конкретной задачи; определять углы падения, преломления и отражения по углу Брюстера.

1

3.5.3

Тепловое излучения. Фотоэффект

знать: тепловое излучение, его характеристики; законы теплового излучения: закон Стефана – Больцмана, закон смещения Вина; законы фотоэффекта.

уметь: анализировать информацию, представленную в виде графика; применять законы теплового излучения в условиях конкретной задачи; применять законы фотоэффекта в условиях конкретной задачи.

1

3.5.4

Эффект Комптона. Световое давление

знать: эффект Комптона; объяснение эффекта Комптона на основе корпускулярных представлений о свете, зависимость светового давления от свойств поверхностей и параметров светового потока.

уметь: анализировать информацию, представленную в виде рисунка; применять закон сохранения импульса в условиях конкретной задачи.

1

6. КВАНТОВАЯ ФИЗИКА, ФИЗИКА АТОМА

1.6.1.

Корпускулярно-волновой дуализм свойств частиц вещества. Волны де Бройля

знать: корпускулярно-волновой дуализм частиц вещества; формула де Бройля.

уметь: применять формулу де Бойля в условиях конкретной задачи.

1

1.6.2

Явление радиоактивности

знать: явление радиоактивности; период полураспада, активность.

1

1.6.3

Природа радиоактивных излучений

знать: -, - и - излучения.

1

1.6.4

Состав атомного ядра

знать: состав атомного ядра и его обозначения.

уметь: определять количественный состав ядра на основе ядерных превращений

1

2.6.1.

Спектр атома водорода. Правило отбора

знать: энергетический спектр атома водорода; обозначение состояний электрона; закон сохранения момента импульса в системе фотон и электрон; спиновый момент импульса фотона (в единицах ); формулы спектральных серий; связь изменения энергии электрона и частоты излучаемого кванта

уметь: анализировать информацию, представленную в виде диаграммы, вычислять частоты переходов.

1

2.6.2

Дуализм свойств микрочастиц. Соотношение неопределенностей Гейзенберга

знать: соотношение неопределенностей Гейзенберга для координат и проекций импульса микрочастицы и для энергии и времени жизни микрочастицы в некотором состоянии.

уметь: пользуясь соотношением неопределенностей, вычислять неопределенности физических величин.

1

2.6.3

Уравнения Шредингера (общие свойства)

знать: вид нестационарного уравнения Шредингера; вид стационарного уравнения Шредингера для линейного гармонического осциллятора, для частицы в потенциальном ящике с бесконечно высокими стенками, для электрона в водородоподобной системе.

1

2.6.4

Уравнение Шредингера (конкретные ситуации)

знать: плотность вероятности обнаружения микрочастицы.

уметь: находить вероятность обнаружения электрона в некоторой области одномерного потенциального ящика с бесконечно высокими стенками.

1

3.6.1.

Спектр атома водорода. Теория Бора для водородоподобных систем

знать: энергетический спектр атома водорода; обозначение состояний электрона; закон сохранения момента импульса в системе фотон и электрон; спиновый момент импульса фотона (в единицах ); формулы спектральных серий; связь изменения энергии электрона и частоты излучаемого кванта

уметь: анализировать информацию, представленную в виде диаграммы, вычислять частоты переходов.

1

3.6.2

Волны де Бройля

знать: корпускулярно-волновой дуализм микрочастиц; формула де Бройля.

уметь: применять формулу де Бройля в условиях конкретной задачи.

1

3.6.3

Волновая функция для микрочастицы в потенциальном ящике

знать: вид волновой функции для частицы в потенциальном ящике с бесконечно высокими стенками; связь импульса с волновым числом и длиной волны де Бройля.

уметь: определять по виду волновой функции импульс, волновое число и длину волны де Бройля частицы; определять вероятность нахождения частицы.

1

3.6.4

Уравнения Шредингера (общие свойства)

знать: вид нестационарного уравнения Шредингера; вид стационарного уравнения Шредингера для линейного гармонического осциллятора, для частицы в потенциальном ящике с бесконечно высокими стенками, для электрона в водородоподобной системе.

1

7. ЭЛЕМЕНТЫ ЯДЕРНОЙ ФИЗИКИ И ФИЗИКИ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

2.7.1

Ядро. Элементарные частицы

знать: названия и обозначения элементарных частиц, их характеристики; состав атомного ядра,

1

2.7.2

Ядерные реакции.

знать: названия и обозначения элементарных частиц; состав атомного ядра. Радиоактивные превращения. Период полураспада. Активность.

уметь: определять ход ядерной реакции по составу исходных и конечных продуктов.

1

2.7.3

Законы сохранения в ядерных реакциях

знать: закон сохранения электрического, лептонного, барионного заряда, спинового момента импульса при превращениях элементарных частиц;

уметь: применять закон сохранения заряда в условиях конкретной задачи.

1

1

2.7.4

Фундаментальные взаимодействия

знать: типы фундаментальных взаимодействий: гравитационное, электромагнитное, сильное, слабое; частицы, участвующие во взаимодействиях различных типов; переносчики фундаментальных взаимодействий;

1

3.7.1

Ядро. Элементарные частицы

знать: названия и обозначения элементарных частиц, их характеристики; состав атомного ядра, условия стабильности ядер.

уметь: определять ход ядерной реакции по составу исходных и конечных продуктов.

1

1

3.7.2

Ядерные реакции.

знать: радиоактивные превращения; названия и обозначения элементарных частиц; состав атомного ядра.

уметь: определять ход ядерной реакции по составу исходных и конечных продуктов.

1

1

3.7.3

Законы сохранения в ядерных реакциях

знать: закон сохранения электрического, лептонного, барионного заряда, спинового момента импульса при превращениях элементарных частиц; величины спинового момента импульса для нуклонов;

уметь: применять закон сохранения заряда в условиях конкретной задачи.

1

3.7.4

Фундаментальные взаимодействия

знать: типы фундаментальных взаимодействий: гравитационное, электромагнитное, сильное, слабое; частицы, участвующие во взаимодействиях различных типов; переносчики фундаментальных взаимодействий;

1

Соседние файлы в папке Варианты для ДЗ-физика