Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
пр.зан.10 відповіді.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
923.65 Кб
Скачать

Захист від лазерних випромінювань

Характеристика лазерного випромінювання (ЛВ). В даний час лазерна техніка знаходить дуже широке застосування. Зараз нараховується більше 200 галузей застосування ОКГ. Вони використовуються в дальнометрії, системах передачі інформації, телебаченні, спектроскопії, в електронній та обчислювальній техніці, для забезпечення термоядерних процесів, біології, медицині, у металообробці, металургії, під час обробки твердих і надтвердих матеріалів, під час зварювальних робіт і ін.

Мала кутова розбіжність ЛВ дозволяє здійснити його фокусування на площах малих розмірів (порівняних з довжиною хвилі) і одержувати щільність потужності світлового потоку, достатнью для інтенсивного розігрівання і випаровування матеріалів (густина потужності випромінювання досягає 1011–1014 Вт/см2). Висока локальність нагрівання і від сутність механічних дій дозволяє використовувати лазери для збирання мікросхем (зварювання металевих виводів і напівпровідникових матеріалів). За допомогою лазерного променя здійснюють проплав багатошарових матеріалів. Використовують ОКГ для приєднання резисторів, конденсаторів, виготовлення друкованих схем. Широко використовують ОКГ для одержання мікроотворів у надтвердих матеріалах.

Розширене застосування лазерних установок у різних галузях діяльності людини сприяє залученню великої кількості працівників для їх обслуговування. Поряд з унікальними властивостями (спрямованість і величезна густина енергії в промені) і перевагами перед іншим устаткуванням лазерні установки створюють певну небезпеку для здоров’я обслуговуючого персоналу.

Принцип дії лазерного випромінювання заснований на використанні змушеного (стимульованого) електромагнітного випромінювання, одержуваного від робочої речовини в результаті порушення його атомів електромагнітною енергією зовнішнього джерела. Стимульоване випромінювання має такі якості:

1 – когерентність (сталість різниці фаз між коливаннями і монохроматичність – практично ширина смуги випромінювання 2 Гц);

2 – мала розбіжність променя (22" – теоретична, 2' – практична);

3 – висока густина потужності (1014 Вт/см2).

У залежності від характеру робочої речовини розрізняють ОКГ: твердотілі (робоча речовина – рубін, скло з неодимом, пластмаси); напівпровідникові (Zn0, CaSe, Te, Pb і ін.); рідинні (з рідко земельними активаторами, органічними барвниками); газові (He-Ne, Ar, Xe, CO2 та ін.).

За режимом роботи лазери підрозділяються на безупинної дії й імпульсні. Зараз отримано лазерне випромінювання в діапазоні від 0,6 мм (субміліметрові) до 1 мкм, що входить в області ІЧ, видиму УФ. Уже з'явилися повідомлення про створення лазерів у діапазоні рентгенівського (6 нм – 0,01 нм) і ведуться роботи зі створення лазерів в області гамма1випромінювання (0,01–0,0005 нм). Лазерне випромінювання в цих діапазонах крім монохроматичності, когерентності, гострої спрямованості і високої густини потужності буде мати і високу проникаючу здатність. Як ми вже говорили, лазерне випромінювання може бути сконцентрованим у вузько спрямованому промені з великою густиною потужності.

Випромінювання лазера з величезною густиною потужності руйнує і випаровує матеріали. Одночасно в області падіння ЛВ на поверхню в матеріалі створюється світловий тиску сотні тисяч мегапаскалей (мільйони атмосфер) (лазерний промінь – потік фотонів, кожний з яких має енергію й імпульс сили) до 106 МПа. При цьому виникає температура до декількох мільйонів градусів К. При фокусуванні лазерного променя в газі відбувається утворення високотемпературної плазми, що є джерелом легкого рентгенівського випромінювання (1 нм).

При проходженні променю через неоднорідне середовище (повітря, (деяке середовище) відбувається розбіжність і блукання, тобто відбивання променя. Відрізняють дзеркальне і дифузне відбивання лазерного променя.

Для оцінки дифузного відображення випромінювання слід враховувати геометричні розміри поверхні, що відбиває (крапкова чи протяжна).

Біологічна дія лазерного випромінювання. Під біологічною дією розуміють сукупність структурних, функціональних і біохімічних змін, що виникають у живому організмі. ЛВ впливають на весь організм – шкіру, внутрішні органи, але особливо небезпечне для зору. Результат впливу ЛВ визначається як фізіологічними властивостями окремих тканин (відбиваючою і поглинаючою здатністю, теплоємністю, акустичними і механічними властивостями), так і характеристиками ЛВ (енергія в імпульсі, щільність потужності, довжина хвилі, тривалість дії, площа опромінювання). Тому що біологічні тканини мають різні характеристики поглинання, ЛВ діє вибірково на різні органи.

При дії лазерного випромінювання на біологічні об’єкті розрізняють термічний та ударний ефекти.

Термічний ефект. Ураження ЛВ подібне до тепловогу опіку: відбувається омертвляння тканин у результаті опіку. Для ЛВ характерні різкі границі уражених ділянок і можливість концентрації енергії в глибоких шарах тканини. На характер ушкодження сильно впливає ступінь природного пофарбування (пігментації), мікроструктура і щільність тканин. Максимальному ураженню піддаються тканини, що містять безбарвну речовину – меланин (пігмент шкіри

тобто в діапазоні випромінювань найбільш розповсюджених ОКГ. Специфічне фарбування печінки і селезінки призводить до того, що їх λmax = 0,48 і 0,51 мкм – характерні частоти аргонових ОКГ (синьо1зелене забарвлення). Залежність ступеня ураження від потужності випромінювання близька до лінійного. Для ОКГ із λ = 0,48–10,6 мкм гранична щільність лазерної енергії для біологічної тканини дорівнює 50 Дж/см2.

Прояв теплової дії: від опікових міхурів і випаровування поверхневих шарів до ураження внутрішніх органів. Ступінь ураження поверхні тіла залежить від того, сфокусоване чи несфокусоване випромінювання. Для внутрішніх органів фокусування ЛВ має менше значення.

Тепловий ЛВ ефект характерний у випадку безупинного режиму роботи ОКГ.

Ударний ефект. Причиною багатьох видів ураження ЛВ є ударні хвилі. Різке підвищення тиску поширюється спочатку з надзвуковою швидкістю, а потім сповільнюється. Ударна хвиля може виникнути як на поверхні тіла, так і у внутрішніх органах. Поширення ударної хвилі в організмі призводить до руйнування внутрішніх органів без будь-яких зовнішніх проявів. Взаємодія ЛВ з біологічною тканиною, крім ударної хвилі, призводить до появи УЗ хвиль (2 · 104 – 1013 Гц), що викликають кавітаційні процеси і руйнування тканин.

Ударний ефект характерний для імпульсного режиму роботи ОКГ. Вплив ЛВ невеликої інтенсивності призводить до різних функціональних зрушень у серцево-судинній системі, ендокринних залозах, центральній нервовій системі. З’являється стомлюваність, великі стрибки артеріального тиску, головні болі та ін.

З локальних дій найбільше небезпечне ЛВ для очей. Для λ < 0,4 мкм і λ > 1,4 мкм ЛВ являє небезпеку для рогівки очей і шкіри, а у значеннях λ = 0,4 – 1,4 мкм – для сітківки ока. Кришталик ока діє, як додаткова фокусуюча оптика, що підвищує концентрацію енергії на сітківці. Це значно (у 5–10 разів) знижує максимально припустимий рівень опромінювання для зіниці ока.

Нормування лазерного випромінювання. Нормування лазерного випромінювання здійснюється згідно санітарних норм і правила СНиП 5804-91. За нормативами для проектування лазерної техніки має бути діючим принцип відсутності впливу на людину прямого, дзеркального та дифузного випромінювання.

Визначаючи клас небезпеки лазерного випромінювання враховують три спектральних діапазони (нм): I – 180 < λ ≤ 380, II – 380 < λ ≤ 1400, III – 1400 < λ ≤ 105.

Згідно нормативам лазерне устаткування за ступенем небезпеки розділяється на 4 класи:

1 клас – повністю безпечні лазери, які не мають шкідливої дії на очі та шкіру;

2 клас – мають небезпеку для очей та шкіри у випадку дії колімірованим (прямим), тобто замкнутим у малому куті розповсюдження пучком; однак, дзеркальне або дифузне випромінювання таких лазерів безпечне для людини;

3 клас – це лазери, які діють у видимій межі спектру і являють небезпеку як для очей (прямим і дзеркальним випромінюванням на відстані 10 см від відбиваючої поверхні), так і шкіри (тільки прямий пучок);

4 клас – найбільш потужні лазери, які небезпечні при дифузному випромінюванні для очей і шкіри на відстані 10 см від дифузно відбиваючої поверхні.

Вимоги безпеки під час роботи з ОКГ.

Крім дії лазерного променя (прямого, дзеркально та дифузно відбитого) експлуатація ОКГ супроводжується комплексом інших шкідливих та небезпечних факторів:

1 – висока напруга зарядних пристроїв, що живлять батарею конденсаторів великої ємності;

2 – забруднення повітряного середовища хімічними речовинами, що утворюються під час накачування (озон, оксид азоту) та під час випаровування матеріалу мішені (оксид вуглецю, оксиди металів і ін.);

3 – УФ випромінювання імпульсних ламп і газорозрядних трубок (супутнє випромінювання);

4 – світлове випромінювання під час роботи ламп накалування;

Таким чином, експлуатація лазерів потребує впровадження комплексу різноманітних захисних заходів.

Діючі ОКГ слід розміщати в окремих, спеціально виділених приміщеннях, які не повинні мати дзеркальних поверхонь. Поверхні приміщень повинні мати коефіцієнт відбивання не більш 0,4. Стіни, стеля і підлога повинні мати матову поверхню. У приміщенні повинна бути висока освітленість (КПО ≥ 1,5%, Езаг ≥ 150 лк). Приміщення повинне обладнуватись загальнообмінною вентиляцією і місцевими відсмоктувачами. Забороняється проводити орієнтацію промення на вікна та двері. Суворо обмежується доступ осіб до ОКГ. Установлюються попереджувальні знаки і система сигналізації про роботу ОКГ. По можливості доцільно екранувати промінь (поміщувати у світлонепроникному екрані). Застосовують різні типи екранів для запобігання виходу променя (металеві, пластмасові). Вивішують знаки безпечної (небезпечної) зони (ГОСТ 12.4.026-76). Для запобігання ураженню органів зору застосовують спеціальні окуляри зі світлофільтрами. Як матеріали для протилазерних окулярів використовують:

1 – поглинаючі стекла і пластмаси;

2 – відбиваючі діелектричні тонкоплівочні, що відбивають 90–95% падаючої світлової енергії (оксиди титану та ін.);

3 – комбіновані, що складаються з поглинаючих і відбиваючих матеріалів.

Важливі характеристики фільтрів: висока вибірковість положення і відбивання, а також значна термостійкість. У цьому плані найкращі показники мають багатошарові фільтри. Для багатошарових фільтрів граничне значення пробою може досягати 1015 Вт/м2. Для кожної довжини хвилі підбираються окуляри з відповідними характеристиками.

Наприклад, окуляри типу C3С122 (максимальна ефективність у діапазоні λ = 0,69–1,6 нм).

Поряд із захисними окулярами в лабораторіях з використанням ОКГ необхідно виключити попадання лазерного випромінювання на відкриті ділянки шкіри. При густині 50 Дж/см2 у людини спостерігаються значні необоротні ушкодження відкритої шкіри. Для захисту шкіри застосовують фетровий одяг, шкіряні рукавички.

Для зменшення густини відбитої (дифузійної) енергії необхідно підбирати колір фарбування стін. Так, темносиня олійна фарба відбиває тільки 16% хвиль довжиною 1,06 мкм і 12% хвиль 0,69 мкм. Низьке відбиття для хвиль довжиною 0,69 мкм має темно1зелене фарбування (15%). Для створення екрануючих штор рекомендують чорні густи тканини, які не пропускають хвилі завдовжки 1,06–0,69 мкм.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]