
- •2.Металлорежущий станок как система.
- •3. Классификация станков.
- •4.Технико-экономические показатели станков.
- •5.Эффективность станочного оборудования.
- •6.Надежность станков.
- •7.Производительность станка.
- •Производительность размерной обработки
- •8.Гибкость станочного оборудования.
- •9.Точность станка как один из показателей технико-экономической эффективности станочного оборудования.
- •10. Мощность привода и кпд станка.
- •11. Движения формообразования при обработке на станках.
- •12. Методы образования производящих линий при обработке на станках.
- •13. Процесс образования поверхностей обработкой на станках.
- •14. Движения в станках.
- •15. Кинематическая схема станка. Элементы кинематических цепей и их условные обозначения.
- •16.Определение передаточных отношений и перемещений в различных видах передач.
- •17.Передаточные отношения кинематических цепей (уравнение кинематического баланса). Расчет частоты вращения и крутящего момента выходного звена
- •18.Ряды частот вращения, двойных ходов и подач в станках.
- •19.Типовые детали, узлы и механизмы металлорежущих станков: станины и направляющие.
- •20.Типовые детали, узлы и механизмы металлорежущих станков: подвижные корпусные узлы и детали.
- •23. Элементарные механизмы привода станков.
- •24.Привод главного вращательного движения
- •Построение структурной сетки привода.
- •25.Привод главного прямолинейно-возвратного движения.
- •1. Кулисный привод
- •2. Реечный привод
- •26.Привод механизма подач.
- •27.Гидравлическое оборудование станков.
- •28.Электрическое оборудование станков.
- •1.Электродвигатели
- •2. Аппаратура ручного управления
- •3. Аппаратура контакторного управления.
- •29.Системы предохранительных устройств.
- •30.Механизмы управления.
- •31.Системы смазки и охлаждения станков.
- •32.Общая методика наладки металлорежущих станков.
- •33.Токарно-винторезные станки.
- •34.Токарно-затыловочные станки.
- •35.Лобовые токарные и карусельные станки.
- •36.Токарно-револьверные станки.
- •37. Токарные автоматы и полуавтоматы.
- •38.Станки сверлильно-расточной группы.
- •39.Фрезерные станки и делительные головки.
- •40.Резьбообрабатывающие станки.
- •41 Станки строгально-протяжной группы.
- •42. Станки шлифовально-притирочной группы.
- •43. Зубообрабатывающие станки.
- •44. Агрегатные станки.
- •45 Станки для обработки ультразвуком.
- •46. Электроискровые станки.
- •47. Электроимпульсные станки.
- •48. Анодно-механические станки.
- •49. Электронно-лучевая и лазерная обработка на станках.
- •50. Станки с программным управлением (числовым и контурным).
- •51. Многоцелевые станки.
- •52. Автоматические линии станков.
- •54. Оборудование для резки заготовок.
- •55. Эксплуатация станков: общие сведения, назначение и содержание паспортов металлорежущих станков.
- •56 Транспортирование оборудования. Методы установки и закрепления станков на фундаменте.
- •57 Испытания станков и проверка их на точность.
- •58 Повышение надежности металлорежущих станков.
- •59 Техника безопасности при работе на станках.
27.Гидравлическое оборудование станков.
Широкое распространение получили станки с гидроприводом, который применяют в качестве привода главного движения и движения подачи станка, для переключения скоростей, торможения, зажима обрабатываемых деталей, автоматизации управления циклом работы станка и т. д. В таких станках, как шлифовальные, протяжные, копировально-фрезерные, поперечно-строгальные и другие, гидропривод становится основным видом привода. Под гидроприводом понимают совокупность устройств, предназначенных для приведения в движение механизмов станков посредством рабочей жидкости, подаваемой под давлением. Гидропривод позволяет существенно упростить кинематику станков, снизить их металлоемкость, повысить точность, надежность работы, а также уровень автоматизации. Производство гидроприводов в промышленно развитых странах постоянно расширяется. Гидроприводами оснащают более половины выпускаемых промышленных роботов.
Широкое применение гидропривода объясняется тем, что он дает возможность бесступенчато регулировать скорости в широких пределах, плавно реверсировать движущие органы станка, автоматически предохранять его от перегрузки, легко обеспечивать смазывание и т. п.
В гидросистемах имеют место объемные, гидравлические и механические потери. Объемные потери обусловлены утечками рабочей жидкости в гидросистеме, гидравлические — снижением давления (внутренним трением масла), механические — трением сопряженных поверхностей.
Нормальная работа гидросистем во многом зависит от вида рабочей жидкости. Жидкость должна обладать достаточной вязкостью, быть однородной, иметь хорошую смазывающую способность, предохранять механизмы от коррозии, не окисляться, не образовывать отложений, не выделять паров, сохранять свои свойства при изменении температуры, давления, скорости и направления движения и должна удовлетворять требованиям пожарной безопасности. Таким требованиям наиболее полно отвечают минеральные масла и их смеси.
Обычно гидропривод металлорежущего станка состоит из следующих основных частей:
бака с рабочей жидкостью;
гидронасоса, подающего рабочую жидкость в систему;
контрольно-регулирующей и распределительной гидроаппаратуры, предназначенной для изменения или поддержания заданного постоянного значения давления или расхода рабочей среды, либо для изменения направления потока рабочей среды;
гидродвигателей – гидроцилиндров для прямолинейного движения или гидромоторов для вращательного движения;
трубопроводов, соединяющих элементы гидропривода в единую систему
вспомогательных устройств, к которым относятся (аккумуляторы, фильтрующие устройства, уплотнительные устройства, гидроусилители и др.)
Применяемые в станках гидроприводы работают с давлением масла до 20 МПа.
28.Электрическое оборудование станков.
1.Электродвигатели
Асинхронные электродвигатели переменного тока.
Большинство металлорежущих станков приводится в движение асинхронными электродвигателями трехфазного тока, которые просты в исполнении и надежны в эксплуатации.
Электродвигатели рассчитаны на напряжение 127, 220 и 380 В. Асинхронные электродвигатели с короткозамкнутым ротором выпускают с номинальной мощностью 0,6—100 кВт на синхронные частоты вращения 600, 750, 1000 и 3000 мин-1.
Электродвигатели постоянного тока с параллельным возбуждением (шпунтовые) широко применяют в станкостроении.
Система генератор – электродвигатель. Систему генератор — электродвигатель применяют в тяжелых и мощных металлорежущих станках при частом реверсировании электродвигателей или при необходимости получения бесступенчатого регулирования частоты вращения скоростей или подачи.
Шаговые и высокомоментные двигатели.
Шаговый электродвигатель — это импульсный синхронный электродвигатель, преобразующий электрические управляющие сигналы в дискретные (шаговые) перемещения исполнительного органа станка. Высокомоментный электродвигатель — это электродвигатель постоянного тока, у которого вместо электромагнитного возбуждения используют возбуждение от постоянных магнитов.