Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция 17 - Лазерный пинцет.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
974.34 Кб
Скачать

Оптический лазерный манипулятор фемтосекундными импульсами

Физика захвата зависит от отношения размера частицы и длины волны излучения, с помощью которого производится захват. Существует два предельных случая:

1) частица много меньше длины волны,

2) частица много больше длины волны.

В первом случае полагают, что частица в фокусе объектива под действием лазерного излучения становится однородно поляризованной и на последующих этапах рассмотрения представляется как точечный диполь. На такую частицу действуют силы обусловленные

- рассеянием ( ),

- поглощением ( ),

- градиентом интенсивности излучения ( ).

Сила пропорциональна поляризуемости и всегда направлена вдоль градиента интенсивности к ограниченному дифракцией фокальному пятну.

Эта сила может превосходить другие упомянутые силы, что приводит к эффекту «ловушки». Частица попадает в потенциальную яму, которую можно описать гармоническим потенциалом:

k – характеристическая константа захвата, x0 - центр ловушки.

Поведение прозрачных частиц, размеры которых много больше длины волны падающего излучения, может быть описано классическими теориями преломления и отражения.

Примером может стать рассмотрение прозрачного шарика, геометрический центр которого смещен относительно положения фокуса объектива (Рис. 8). Два луча a и b испытывают преломление в шарике и отклоняются от начального направления распространения. Таким образом, шарик изменяет импульс фотонов, ассоциированных с лучами a и b.

Рис.8

Пунктир – конечное положение шарика, сплошная линия исходное смещенное положение

Из рисунка следует, что шарик «толкает» луч a вправо и наверх. Следовательно, отклоненные фотоны придают импульс шарику, направленный в противоположную сторону, т.е. влево и вниз. Аналогично можно прийти к выводу, куда толкает шарик луч b. Таким образом, результирующая сила создаваемая полем направляет шарик в сторону фокуса. При достаточно сильном поле излучения частице трудно изменить положение вблизи фокуса, и она оказывается в ловушке.

Движение частицы в потенциальной яме под действием света

Задача, которая поставлена в настоящем разделе относится к использованию фемтосекундного лазера для оптического захвата в качестве источника импульсного излучения.

В случае непрерывного излучения поведение захваченной частицы в потенциальной яме глубины и ширины . Потенциал обусловлен взаимодействием частицы с электрическим полем, которое пропорционально квадрату электрического поля лазерного излучения и поляризуемости частицы .

Ширина и глубина ямы определяются длиной волны излучения лазера , мощностью излучения и параметрами объектива.

В том случае, когда существует модуляция напряженности электрического поля излучения лазера, то рассмотренный выше потенциал имеет временную зависимость. В том случае, когда имеем дело с импульсами излучения, т.е. используем следующие параметры, - амплитуда импульсов, - длительность импульсов, - время между импульсами, при этом . В пределе быстрой модуляции , когда за время «модуляции» частица практически не смещается внутри ямы , где , задача существенно упрощается.

В этом пределе кинетика частицы может быть описана с помощью функции распределения, усредненной по некоторому периоду , который удовлетворяет неравенствам :

Функция распределения подчиняется усредненному уравнению Смолуховского, дифференциальное уравнение, описывающее эволюцию распределения вероятностей для пространственного положения броуновской частицы:

Опуская все детали математического обоснования представления поведения захватываемой частицы, как броуновской частицы, находящейся в потенциальной яме, можно сформулировать. Для оптического захвата броуновской частицы необходимо использовать импульсный лазер с высокой частотой повторения импульсов, чтобы за время между импульсами частица не успевала значительно сместиться из точки захвата. Захват фемтосекундными импульсами возможен для широкого диапазона размеров объектов.