- •В. В. Маркевич, в. В. Носко Средства автоматики сельскохозяйственной техники
- •74 06 Агроинженерия и специальности 1-36 12 01
- •Модуль 0
- •Тематический план
- •Модуль 1 Теоретические основы автоматики,
- •Научно-теоретическое содержание модуля Словарь основных понятий
- •2. Основные понятия автоматики
- •3. Схемы автоматики
- •4. Обратные связи. Назначение и классификация
- •2. Классификация сау
- •Вопросы для самоконтроля
- •Лекция 3. Основные положения теории автоматического управления План лекции
- •1. Статические характеристики
- •2. Типы воздействий, их назначение при исследовании элементов и систем
- •3. Динамические характеристики элементов и систем
- •4. Математическое описание элементов и систем автоматики
- •5. Передаточные функции звеньев
- •6. Передаточные функции автоматических систем
- •7. Понятие о типовых динамических звеньях
- •8. Понятие об устойчивости систем автоматического управления
- •9. Критерии устойчивости
- •10. Понятие о качестве управления, его показатели
- •Вопросы для самоконтроля
- •2. Понятие о законах регулирования
- •3. Классификация автоматических регуляторов, их выбор и настройка
- •Вопросы для самоконтроля
- •Лекция 5. Общие сведения о приборах и средствах автоматизации План лекции
- •1. Понятие технического средства автоматики
- •2. Классификация технических средств автоматики
- •3. Основные характеристики средств автоматики
- •4. Электронно-информационные системы сложной сельскохозяйственной техники
- •Вопросы для самоконтроля
- •Лекция 6. Первичные измерительные преобразователи (датчики) План лекции
- •1. Основные сведения о датчиках, характеристики, классификация
- •2. Механические датчики
- •3. Механические датчики с электроконтактами
- •4. Потенциометрические датчики
- •5. Тензометрические датчики
- •6. Электромагнитные датчики
- •7. Датчик Холла
- •8. Электронные датчики
- •9. Емкостные датчики
- •10. Пьезоэлектрические датчики
- •11. Фотоэлектрические датчики
- •12. Радиотехнические и ультразвуковые датчики
- •13. Датчики температуры
- •14. Гидравлические и пневматические датчики
- •1. Сравнивающие устройства
- •2. Задающие устройства
- •3. Усилительные устройства
- •4. Исполнительные механизмы
- •Лабораторная работа № 2 «Измерительные схемы и преобразователи»
- •Лабораторная работа № 3 «Исследование термоизмерительных преобразователей»
- •3Адачи работы.
- •Лабораторная работа № 4 «Изучение емкостных датчиков»
- •Лабораторная работа № 5 «Исследование потенциометрических датчиков»
- •Лабораторная работа № 6 «Изучение прибора активного контроля ак-3м»
- •Пример выполнения индивидуального задания
- •Разноуровневые задания для контроля знаний по модулю 1
- •Уровень I (репродуктивный)
- •Уровень II (продуктивный)
- •Научно-теоретическое содержание модуля Словарь основных понятий
- •План лекции
- •1. Автоматическое управление движением машин и их рабочих органов в продольно-вертикальной плоскости
- •1.1. Сар глубины пахоты и культивации
- •1.2. Автоматическое регулирование глубины заделки семян
- •1.3. Автоматическое регулирование положения режущих аппаратов уборочных машин
- •2. Автоматическое управление движением машин и их рабочих органов в горизонтальной плоскости
- •2.1. Автоматическое вождение пахотных агрегатов
- •2.2. Автоматизация вождения самоходных зерноуборочных комбайнов
- •2.3. Сав самоходных сельскохозяйственных машин
- •3. Автоматическое управление скоростными и нагрузочными режимами рабочих органов и двигателя машин
- •3.1. Автоматизация управления нагрузочными режимами двигателей
- •Основные выполняемые данной системой функции:
- •3.2. Автоматическое регулирование загрузки молотилки самоходных зерноуборочных комбайнов
- •4.1. Контроль и автоматизация загрузки семенных ящиков сеялок
- •4.2. Контроль нормы высева семян
- •4.3. Автоматический контроль и сигнализация работы зерноуборочной машины
- •Вопросы для самоконтроля
- •1. Автоматизация послеуборочной обработки и хранения зерна
- •2. Автоматизация послеуборочной обработки льна
- •Вопросы для самоконтроля
- •2. Автоматический контроль и учет движения кормов
- •3. Автоматические установки для доения коров и первичной обработки молока
- •4. Автоматизация установок очистки, пастеризации и охлаждения молока
- •5. Автоматизированные инкубаторы. Объем автоматизации и основные технические решения
- •Вопросы для самоконтроля
- •Лекция 11. Автоматизация в сооружениях защищенного грунта
- •1. Требуемые условия в сооружениях защищенного грунта
- •2. Автоматическое управление температурой и вентиляцией в сооружениях защищенного грунта
- •3. Автоматическое поддержание влажности почвы
- •Вопросы для самоконтроля
- •Лабораторная работа № 9 «Исследование сар температуры в сушильной камере»
- •3Адачи работы.
- •Лабораторная работа № 10 «Исследование статической и астатической систем регулирования уровня жидкости»
- •Лабораторная работа № 11 «Настройка электрической коммутационной аппаратуры»
- •Уровень I (репродуктивный)
- •Уровень II (продуктивный)
- •Уровень III (творческий)
- •Приложение 1
- •Приложение 2
- •Список литературы
- •Средства автоматики сельскохозяйственной техники
3. Автоматическое поддержание влажности почвы
К наиболее распространенным способам полива относятся поверхностный (по бороздам или затоплением), дождевание и подпочвенное орошение. Выбор способа полива зависит от конкретных условий. Наиболее труднодоступным для автоматизации является поверхностный полив. Автоматизация полива в сочетании с механизацией преследует цель повысить производительность труда и улучшить его качество.
Не вся вода, накапливаемая в почве, может быть использована растениями. Когда сила, с которой корни втягивают воду, становится равной силе связи воды почвой, снабжение растений водой затрудняется. Растения в этом случае начинают подавать признаки устойчивого увядания. Очевидно, такого иссушения почвы допускать нельзя. Излишнее же количество воды вызывает не только ее перерасход, но и нарушает воздушный режим почвы. Следовательно, количество влаги в почве должно находиться в определенных пределах.
На рис. 2.32 показано устройство для регулирования влажности почвы при подпочвенном орошении.
Рис. 2.32. Схема устройства автоматического регулирования влажности почвы
При заданных влажности почвы и уровне воды в колодце 1 поплавковым клапаном 2 закрыт шланг 3 и впускной патрубок 4 перекрыт мембранным запорным органом 5, надмембранная полость которого заполнена водой. При этом электромагнитным клапаном 6 тоже закрыт слив воды из надмембранной полости в камеру регулирования 7.
При снижении уровня воды в колодце 1 поплавковый клапан 2 открывается, однако запорный орган 5 остается закрытым, так как сигнал об уменьшении влажности не поступал, электромагнитный клапан 6 закрыт и вода из надмембранной полости запорного органа 5 не сливается. При уменьшении влажности сигналом с датчика 8 через усилитель 9 открывается электромагнитный клапан 6. В результате происходит слив воды из надмембранной полости запорного органа 5 через камеру регулирования 7, гибкий шланг 3 и открытый поплавковый клапан 2 в колодец 1. При этом запорный орган поднимается под действием напора воды в патрубке 4. Вода из впускного патрубка попадает в приемный колодец 1 и дрены-увлажнители 10.
При повышении уровня воды в колодце 1 возрастает пьезометрический напор в дренах-увлажнителях 10, что приводит к повышению уровня грунтовых вод. Благодаря наличию поплавковой камеры 11 с поплавковым клапаном 2, которая гидравлически связана с электромагнитным клапаном 6 и запорным органом и представляет собой регулятор напора, ограничивается пьезометрический напор в дренах-увлажнителях посредством поддержания заданного уровня в колодце 1 и зависящий от него уровень грунтовых вод. Уровень в колодце задается перемещением по вертикали поплавковой камеры 11, закрепленной на стержне 13, и фиксацией последнего стопорным винтом 14. При достижении грунтовыми водами заданного уровня он будет поддерживаться, пока влажность почвы не достигнет заданной за счет капиллярного подпитывания. Тогда с датчика 8 поступает сигнал и подача воды прекращается. Независимо от уровня воды в приемном колодце 1 патрубок 4 будет закрыт, пока влажность снова не снизится. Благодаря наличию дождемера 12 устройство реагирует на осадки и прекращает подачу воды при их выпадении в достаточном количестве.
Применение устройства позволяет обеспечить высокую точность регулирования и поддерживать правильный баланс влажности в почве.
Применяемые в практике полива современные системы автоматизации относятся к системам программного управления. Они базируются на современной технологии полива, в основе которой лежат эмпирические методы. Такие методы используют наряду с данными биологической науки о роли воды в жизни растений орошаемого земледелия и результаты производственных экспериментов по орошению определенной культуры в конкретных условиях. Все это в совокупности позволяет устанавливать поливной режим, который слагается из числа и сроков поливов, значений оросительных и поливных норм. Заданный поливной режим является исходной программой автоматизации, которая, помимо повышения производительности труда, должна обеспечивать в определенные сроки заданные поливные и оросительные нормы.
На рис. 2.33 показана структурная схема при надпочвенном поддержании заданной влажности в теплице.
Автоматизированная система управления влажностными параметрами представляет собой комплекс автоматизированного контроля и управления влажностным режимом теплицы и является программно-технической системой для достоверного измерения состояния климата в теплице и расчета на этой основе управляющих воздействий на исполнительные механизмы инженерного оборудования теплицы.
Рис.2.33. Структорная схема САУ влажностными параметрами теплицы
Система выполняет следующие функции:
задание суточного цикла влажности и поддержание необходимого климатического режима;
контроль расхода воды в канале распыления;
представление технологической информации в удобном для оперативного персонала виде;
повышение производительности теплицы за счет жесткого автоматического поддержания требуемых параметров;
Архитектура данной системы имеет два уровня: нижний – подсистема управления (датчики, микроконтроллер, исполнительные механизмы и оборудование) и верхний – пост оператора (персональный компьютер). Связь между уровнями осуществляется по интерфейсу RS-485. Реализация алгоритмов управления осуществляется с помощью автоматизированного модуля верхнего уровня (например, SCADA-система TRACE MODE), который также отвечает за интерфейс на посту оператора.
