- •Курсовая работа по дисциплине
- •1. Задание и исходные данные к проекту
- •2 Выбор типа электропривода
- •3 Выбор и проверка электродвигателя
- •3.1 Расчёт мощности двигателя
- •3.2 Предварительный выбор двигателя
- •3.3 Расчет передаточного числа редуктора
- •3.4 Расчет и построение нагрузочной диаграммы двигателя
- •3.5 Проверка двигателя по нагреву
- •4 Выбор основных узлов силовой части электропривода
- •4.1Выбор тиристорного преобразователя
- •4.2 Выбор силового трансформатора
- •4.3 Выбор сглаживающего реактора
- •4.4 Разработка принципиальной электрической схемы силовой части электропривода
- •5. Расчет параметров математической модели силовой части электропривода
- •5.1 Расчет параметров силовой чисти электропривода в абсолютных единицах
- •5.2 Выбор базисных величин системы относительных единиц
- •5.3. Расчет параметров силовой части электропривода в относительных единицах
- •5.4 Расчет коэффициентов передачи датчиков
- •6. Разработка системы управления электроприводом
- •6.1. Выбор типа системы управления электроприводом
- •6.2 Расчет регулирующей части контура тока якоря
- •6.2.1. Расчет параметров математической модели контура тока.
- •6.2.2 Конструктивный расчет регулятора тока
- •6.3 Расчет регулирующей части контура скорости
- •6.3.1. Расчет параметров математической модели контура скорости
- •6.3.2. Конструктивный расчет регулирующей части контура скорости
- •6.4 Расчет задатчика интенсивности
- •6.4.1. Расчет параметров математической модели задатчика интенсивности
- •6.4.2 Конструктивный расчет задатчика интенсивности
- •7. Основы теории систем подчиненного регулирования 7.1 Обобщенная схема многоконтурной системы подчиненного регулирования
- •7.2. Синтез регуляторов
- •Синтез регулятора первого контура и его свойства
- •8. Системы регулирования тока якоря
- •8.1. Функциональная схема сар тока якоря
- •8.2. Синтез регуляторов тока якоря
- •8.3. Анализ свойств сар тока якоря
- •9. Моделирование в matlab
- •9.1 Модель асинхронного двигателя во вращающейся системе координат
- •Базисные величины системы относительных единиц
- •9.2 Математическая модель двигателя постоянного тока с контуром тока
4.3 Выбор сглаживающего реактора
Сглаживающий реактор включается в цепь выпрямленного тока преобразователя с целью уменьшения переменной составляющей тока (пульсаций). Пульсация выпрямленного тока должны быть ограничены на уровне допустимого значения для выбранного двигателя. Максимально допустимый коэффициент пульсации KI(доп) задается в числе данных двигателя и представляет собой отношение действующего значения переменной составляющей тока якоря к его номинальному значению. Для расчета индуктивности сглаживающего реактора определим требуемую индуктивность всей главной цепи системы «тиристорный преобразователь- двигатель» по условию ограничения пульсаций.
ЭДС
преобразователя при угле управления
:
где Ке — коэффициент, зависящий от схемы преобразователя (для трехфазной мостовой схемы Ке = 1,35).
Максимальная эквивалентная индуктивность главной цепи по условию ограничения пульсаций выпрямленного тока:
мГн
Расчетная индуктивность сглаживающего реактора:
Гн
Если расчетная индуктивность оказалась отрицательной или равной нулю, то это означает, что сглаживающий реактор не требуется.
4.4 Разработка принципиальной электрической схемы силовой части электропривода
В состав комплектного тиристорного ЭП входят:
- электродвигатель постоянного тока с тахогенератором и центробеж-ным выключателем ( при необходимости);
- ТП для питания якоря электродвигателя, состоящий из силовых тиристоров и системой охлаждения , защитных предохранителей, разрядных и защитных RLC - цепей, СИФУ, устройств выделения аварийного режима, контроля предохранителей и защиты от перенапряжений;
- ТП для питания обмотки возбуждения; силовой трансформатор или анодный реактор;
- коммутационная и защитная аппаратура в цепях постоянного и переменного тока (автоматические выключатели, линейные контакторы, рубильники);
- сглаживающий реактор в цепи постоянного тока (при необходимости);
- устройство динамического торможения (при необходимости);
- система управления электроприводом;
- комплект аппаратов, приборов и устройств, обеспечивающих оперативное управление, контроль состояния и сигнализацию электропривода.
На рис.4 приведена принципиальная схема реверсивного электропривода серии КТЭУ на ток до 200 А. Тиристорный преобразователь ТП, состоящий из двух встроенно-включенных мостов VSF, VSB, получает питание от сети 380 через автоматический выключатель QF1 и анодный реактор LF (или трансформатор ТМ). На стороне постоянного тока защита осуществляется автоматически выключателем QF1. Линейный контактор КМ служит для частой коммутации якорной цепи (при необходимости), динамическое торможение электродвигателя М осуществляется через контактор KV и резистор RV. Трансформатор Т1 и диодный мост V служат для питания обмотки возбуждения двигателя LМ. Тахогенератор BR возбуждается от отдельного узла А-BR; имеется также узел питания электромагнитного тормоза YB. Система управления СУ по сигналам оператора с пульта управления ПУ, сигналом о состоянии коммутационных и защитных аппаратов, получаемых из узлов управления этими аппаратами и сигнализации УУК и С, сигналом из общей схемы управления технологическим агрегатом СУТА, сигналом о токе якоря и токе возбуждения, получаемым с пунктов RS1, RS2, сигналом о напряжении на якоре электродвигателя, снимаемом с потенциометра RP1, сигналом о скорости, формируемым тахогенератором BR, выдает сигналы управления в СИФУ, УУК и С и на пульт управления ПУ. Узел управления коммутационной аппаратурой и сигнализации УУК и С по командам оператора и сигналом от СУ включает или выключает аппараты QF1-QF3, КМ, KV, а также осуществляет сигнализацию о состоянии этих и других защитных аппаратов.
Сигналы задания и обратных связей в СУ гальванически разделяются от внешних протяженных цепей или цепей с высоким потенциалом. Система управления СУ через гальванические разделители выдает в СУТА значения необходимых регулируемых параметров (скорости, тока и др.). Устройство УУК и С получает сигналы от ПУ, датчиков, СУТА через двухпозиционные гальванические разделители и преобразователи напряжения высокого уровня в напряжение низкого уровня, используемое в системе. Устройство УУК и С выдает на пульт управления и в СУТА двухпозиционные логические или контактные сигналы: о готовности электропривода к работе, состоянии аварийной и предупреждающей сигнализации, нулевой скорости или достижении некоторой заданной скорости и т.п.
Рисунок
4. Функциональная схема однодвигательного
электропривода серии КТЭУ, Iном<200
А.
