- •1.Металлургические производства с полным циклом.
- •3. Кинетика химических реакций металлургических процессов. Энергия активации.
- •4.Газовая струя в жидкой ванне
- •6. Основные и кислые металлургические шлаки.
- •7. В теории нагрева все тела условно делятся на тонкие и массивные.
- •9. Окисление примесей в жидком металле.
- •10. Десульфурация и дефосфорация жидкого ме. Кинетика деS и деP.
- •11. Теоретические основы раскисления стали. Х-ка элементов-раскислителей.
- •12. Неметаллические включения. Газы в сталях и сплавах.
- •13. Исходные материалы для производства чугуна и стали: Рудные материалы. Передельный чугун.
- •14. Исходные материалы для производства чугуна и стали: Стальной лом. Технология подготовки стального лома к плавке.
- •15. Исходные материалы для производства чугуна и стали: Ферросплавы и легирующие элементы.
- •16. Исходные материалы для производства чугуна и стали: Твердые окислители, шлакообразующие, флюсы.
- •17. Технология получения кокса
- •18. Технология производства извести на металлургических предприятиях.
- •19. Технология агломерации.
- •19. Технология получения окатышей.
- •20. Кислородная, паровая и углекислотная конверсия природного газа. Газификация твёрдого топлива.
- •22. Реакции протекающие при восстановление железа из руд. Восстановление оксидов железа водородом. Факторы влияющие на процессы восстановления. Способы восстановления.
- •23. Особенности технологии получения губчатого железа в шахтных печах. Mydrex- процесс и xyl -процесс. Получение металлизованных окатышей.
- •24. Достоинства и недостатки способов востановления железа в кипящем слое.Технология востановления железа в кипящем слое. Восстановление железа в кипящем слое
- •26. Конструкция Установки korex. Технология получения чугуна в это процессе. Достоинства и недостатки.
- •27. Шихтовые материалы для получения стали.
- •30. Конструкция кислородного конвертера. Технология поучения стали в кислородном конвертере.
- •31. Конструкция электродуговых печей. Средства Итентофикации процессов в этих печах. Технология выплавки стали.
- •32. Технология внепечной обработки стали.
- •33. Обработка жидкого металла синтетическим шлаком и порошкобразными материалами.
- •35.Технология вакуумирования нациркуляционном вакууматоре (rh-установка) и ковшевом вакууматоре (vd/vod-установка)
- •36. Скорость затвердевания слитка. Хим неоднородность слитка. Температура и скорость разливки. Технология разливки спокойной стали. Особенности разливки кипящей стали.
- •37. Достоинства и недостатки различных способов разливки стали.
- •38. Разновидности разливки стали в изложницы.
- •39. Разновидности непрерывной разливки стали.
- •40. Затвердевание непрерывного слитка. Конструкция машин непрерывного литься заготовок и их отдельные узлы.
- •41. Дефекты стальных слитков и заготовок и причин их возникновения.
- •42. Модифицирование стали. Электромагнитное перемешивание. Мягкое обжатие на мнлз. Другие способы воздействия на кристаллизующийся металл.
- •43. Классификация методов обработки металлов давлением. Горячая и холодная деформация. Технология и способы прокатки.
- •45. Влияние газового состава атмосферы печи на величину окалинообразования. Влияние температуры и химического состава на скорость окисления. Методы борьбы с окислением и обезуглероживанием.
- •46. Технология листопрокатного производства.
- •47. Производство электросварных труб. Технология производства бесшовных труб
- •48. Область применения литейно – прокатных модулей и их конструкции. Особенности прокатки на литейно – прокатных модулях
- •49. Технология волочения проволоки. Нанесение покрытий на металл. Производство металлокорда
- •50. Электрошлаковый, вакуумно – дуговой, электронно – лучевой, плазменный переплав.
- •51. Коксовые и газовые вагранки
- •52. Конструкция электродуговых печей литейного класса
- •53. Индукционные печи. Технология плавки в индукционных печах
- •54. Изготовление отливок в песчаные формы. Специальные способы литья
52. Конструкция электродуговых печей литейного класса
ЭДП постоянного тока
1-корпус
2-рабочее окно
3-шихта
4-свод
5-сводовый электрод
6-ванна
Отличие печей постоянного тока от переменного:
кол-во электродов: переменного-много, постоянного-один
расход электродов: у постоянного гораздо меньше, но электроды стоят дороже.
1-куполообразный
свод
2-стенки
3-желоб
4-сталевыпускное отверстие
5-электрическая дуга
6-сферический под
7-рабочее окно
8-заслонка
9-электроды
53. Индукционные печи. Технология плавки в индукционных печах
ИНДУКЦИОННЫЕ ТИГЕЛЬНЫЕ ПЕЧИ.
В этих печах выплавляют сплавы чёрных и цветных металлов и чистые Ме (чугун, сталь, бронза, латунь, медь, алюминий). По частоте тока: 1) Печи промышленной частоты 50 Гц. 2) Средней частоты до 600 Гц. (до 2400 Гц также входят). 3) Высокой частоты до 18000 Гц.
Часто инд. печи работают в паре (дуплекс процесс). В первой печи расплавляют шихту, во второй доводят Ме до нужного хим. состава либо выдерживают Ме при нужной t-ре до момента разливки. Передача Ме-ла из печи в печь может производиться непрерывно по желобу при помощи крановых ковшей либо ковшами на электрокаре. В индукционных печах изменяется состав шихты, вместо чушкового чугуна используют легковесные низкокачественные материалы (стружка, легковесный металлолом, отходы собственного производства, т.е. обрезь).
Принцип действия В тигель загружается шихта, переменный эл. ток, проходящий по индуктору (катушка), создает магнитное поле, которое индуктирует в металлической садке электродвижущую силу, которой и вызывают индуктированные токи, которые и вызывают нагрев и расплавление Ме-ла. Внутри катушки тигель из огнеупорного материала, который защищает индуктор от воздействия жидкого Ме-ла. Первичной обмоткой является индуктор. Вторичной обмоткой и одновременно нагрузкой – Ме-л в тигле.
КПД печи зависит от электрического сопротивления Ме-ла и от частоты тока. Для высокого КПД необходимо, чтобы диаметр садки (d тигля) составлял не менее 3,5-7 глубин проникновения тока в Ме-л.Ориентировочные соотношения между ёмкостью тигля и частотой тока для стали и чугуна. Производительность печей как правило для чугуна и стали 30-40 т/час. При расходе эл.энергии 500-1000 кВт*ч/тонну. Для бронзы, меди 15-22 т/час, для алюминия 8-9 т/час.Чаще всего используют тигель цилиндрической формы. Магнитный поток, создаваемый индуктором, проходит по замкнутым линиям как внутри индуктора, так и снаружи.
В зависимости от способа прохождения магнитного потока с внешней стороны различают: 1) открытую; 2) экранированную; 3) закрытую конструкции печи
При
открытой конструкции магнитный поток
проходит по воздуху, поэтому конструктивные
эл-ты (например каркас) выполняют
неметаллическими или размещают на
большом расстоянии от индуктора. При
экранировании магнитный поток от
стальных конструкций отделяется экраном
из меди. При закрытой – магнитный поток
проходит по радиально-расположенным
пакетам трансформаторной стали –
магнитопроводам.
Схема устройства электрической индукционной печи:1 — крышка, 2 узел поворота, 3 — индуктор, 4 — магнитопроводы, 5 — металлоконструкция, 6 — подводы водяного охлаждения, 7 — тигель, 8 — площадка
Печь включает сл. узлы: Индуктор, Футеровку, Каркас, Магнитопроводы, Крышку, Падину, Механизмы наклона. Индуктор кроме основного назначения выполняет также ф-ию эл-та, который воспринимает мех. и тепловую нагрузку со стороны тигля. Кроме того, охлаждение индуктора обеспечивает отвод теплоты, которая возникает из-за электрических потерь, поэтому индукторы выполняют либо в виде цилиндрической однослойной катушки, где все витки расположены в виде спирали с постоянным углом наклона, либо в виде катушки все витки которой уложены в горизонтальной плоскости, а переходы между ними в виде коротких наклонных участков.
В зависимости от марки Ме-ла и уровня t-р используют 3 вида футеровки:
1. Кислая (содержит > 90% SiO2) выдерживает 80-100 плавок
2
.
Основная
(до 85% MgO)
выдерживает 40-50 плавок для малых печей
и до 20 плавок для печей ёмкостью >1
тонны
3. Нейтральная (на основе оксидов Al2O3или CrO2)
Схемы индукционных плавильных печей: а — тигельная, б — канальная; 1 — индуктор; 2 — расплавленный металл; 3 — тигель; 4 — магнитный сердечник; 5 — подовый камень с каналом тепловыделения.
Падина выполняется из шамотного кирпича для больших печей или аспоцемент для малых. Крышка вып. из конструкционной стали и футеруется изнутри. Достоинства тигельных печей:1)Интенсивная циркуляция расплава в тигле; 2) Возможность создания атмосферы любого типа (окислительная, восстановительная, нейтральная) при любом давлении; 3) Высокая производительность; 4) Возможность полного слива Ме-ла из печи; 5) Простота обслуживания, возможность механизации и автоматизации. Недостатки:1)Относительно низкая t-ра шлаков, наводимых на зеркало Ме-ла; 2) Сравнительно низкая стойкость футеровки при высоких t-рах расплава и при наличии теплосмен.
ИНДУКЦИОННЫЕ КАНАЛЬНЫЕ ПЕЧИ.
Принцип действия состоит в том, что переменный магнитный поток пронизывает замкнутый контур, образованный жидким Ме-лом и возбуждает в этом контуре ток.
Контур жидкого Ме-ла окружен огнеупорным материалом, который запечен в стальной корпус. Пространство, которое заполняется жидким Ме-лом имеет форму изогнутого канала. Рабочее пространство печи (ванна) соединяется с каналом 2-мя отверстиями за счет чего и образуется замкнутый контур. Во время работы печи жидкий Ме-л движется в канале и местах соединения с ванной. Движение обусловлено перегревом Ме-ла (в канале выше на 50-100 ºС чем в ванне), а также воздействием магнитного поля.
При сливе всего Ме-ла из печи происходит разрыв электрического контура, который создаётся жидким Ме-лом в канале. Поэтому в канальных печах производят частичный слив жидкого Ме-ла. Масса «болота» опр-ся исходя из того, чтобы масса столба жидкого Ме-ла над каналом превышала электродинамическую силу, выталкивающую Ме-л из канала.
Канальные печи используют в качестве миксера раздаточных и плавильных печей. Миксер предназначен для накопления определенной массы Ме-ла и выдержке Ме-ла при определенной t-ре. Ёмкость миксера принимают равной не менее двукратной часовой производительности плавильной печи. Раздаточные печи используют для заливки жидкого Ме-ла непосредственно в формы.
По сравнению с тигельными печами канальные имеют более низкие капиталовложения (50-70% от тигельной), низкий удельный расход электроэнергии (более высокий КПД). Недостаток: Отсутствие гибкости регулирования хим.состава.
К основным узлам относят: Каркас печи; Футеровку; Индуктор; Мех-зм наклона; Электрооборудование; Система водяного охлаждения.
