- •1.Металлургические производства с полным циклом.
- •3. Кинетика химических реакций металлургических процессов. Энергия активации.
- •4.Газовая струя в жидкой ванне
- •6. Основные и кислые металлургические шлаки.
- •7. В теории нагрева все тела условно делятся на тонкие и массивные.
- •9. Окисление примесей в жидком металле.
- •10. Десульфурация и дефосфорация жидкого ме. Кинетика деS и деP.
- •11. Теоретические основы раскисления стали. Х-ка элементов-раскислителей.
- •12. Неметаллические включения. Газы в сталях и сплавах.
- •13. Исходные материалы для производства чугуна и стали: Рудные материалы. Передельный чугун.
- •14. Исходные материалы для производства чугуна и стали: Стальной лом. Технология подготовки стального лома к плавке.
- •15. Исходные материалы для производства чугуна и стали: Ферросплавы и легирующие элементы.
- •16. Исходные материалы для производства чугуна и стали: Твердые окислители, шлакообразующие, флюсы.
- •17. Технология получения кокса
- •18. Технология производства извести на металлургических предприятиях.
- •19. Технология агломерации.
- •19. Технология получения окатышей.
- •20. Кислородная, паровая и углекислотная конверсия природного газа. Газификация твёрдого топлива.
- •22. Реакции протекающие при восстановление железа из руд. Восстановление оксидов железа водородом. Факторы влияющие на процессы восстановления. Способы восстановления.
- •23. Особенности технологии получения губчатого железа в шахтных печах. Mydrex- процесс и xyl -процесс. Получение металлизованных окатышей.
- •24. Достоинства и недостатки способов востановления железа в кипящем слое.Технология востановления железа в кипящем слое. Восстановление железа в кипящем слое
- •26. Конструкция Установки korex. Технология получения чугуна в это процессе. Достоинства и недостатки.
- •27. Шихтовые материалы для получения стали.
- •30. Конструкция кислородного конвертера. Технология поучения стали в кислородном конвертере.
- •31. Конструкция электродуговых печей. Средства Итентофикации процессов в этих печах. Технология выплавки стали.
- •32. Технология внепечной обработки стали.
- •33. Обработка жидкого металла синтетическим шлаком и порошкобразными материалами.
- •35.Технология вакуумирования нациркуляционном вакууматоре (rh-установка) и ковшевом вакууматоре (vd/vod-установка)
- •36. Скорость затвердевания слитка. Хим неоднородность слитка. Температура и скорость разливки. Технология разливки спокойной стали. Особенности разливки кипящей стали.
- •37. Достоинства и недостатки различных способов разливки стали.
- •38. Разновидности разливки стали в изложницы.
- •39. Разновидности непрерывной разливки стали.
- •40. Затвердевание непрерывного слитка. Конструкция машин непрерывного литься заготовок и их отдельные узлы.
- •41. Дефекты стальных слитков и заготовок и причин их возникновения.
- •42. Модифицирование стали. Электромагнитное перемешивание. Мягкое обжатие на мнлз. Другие способы воздействия на кристаллизующийся металл.
- •43. Классификация методов обработки металлов давлением. Горячая и холодная деформация. Технология и способы прокатки.
- •45. Влияние газового состава атмосферы печи на величину окалинообразования. Влияние температуры и химического состава на скорость окисления. Методы борьбы с окислением и обезуглероживанием.
- •46. Технология листопрокатного производства.
- •47. Производство электросварных труб. Технология производства бесшовных труб
- •48. Область применения литейно – прокатных модулей и их конструкции. Особенности прокатки на литейно – прокатных модулях
- •49. Технология волочения проволоки. Нанесение покрытий на металл. Производство металлокорда
- •50. Электрошлаковый, вакуумно – дуговой, электронно – лучевой, плазменный переплав.
- •51. Коксовые и газовые вагранки
- •52. Конструкция электродуговых печей литейного класса
- •53. Индукционные печи. Технология плавки в индукционных печах
- •54. Изготовление отливок в песчаные формы. Специальные способы литья
20. Кислородная, паровая и углекислотная конверсия природного газа. Газификация твёрдого топлива.
Эффективность технологий получения водорода путем конверсии природного газа определяется в основном стадией получения синтез-газа из углеводородного сырья. В настоящее время различают три основных способа окислительной конверсии метана в синтез-газ:
паровая конверсия
Так как реакция происходит в газовой фазе, то учет теплоты парообразования воды приводит к величине ΔН=+262 кДж/моль.
парциальное окисление кислородом
углекислотная конверсия метана
Как следует из уравнений (1)-(3), количество водорода в синтез-газе в этих реакциях различно. Хотя формально при паровой конверсии выход водорода согласно реакции 1 в полтора раза превышает выход по реакциям 2 и 3, однако для осуществления эндотермического процесса сжигается около половины исходного газа. таким образом реальный выход водорода относительно использованного метана составляет 1,5 и он уступает реакции парциального окисления 2, в которой выделяющееся тепло покрывает все потребности технологического процесса.
Г
азификация
– есть термохимический процесс
переработки твердого топлива путем
взаимодействия его с кислородом, водяными
парами и другими газифицирующими
агентами с целью превращения топлива
в горючий газ (смесь CO, H2 и др.),
предназначенный для последующего
сжигания (энергетический и бытовой газ)
или для технологических процессов
(технологический газ).
Для предварительной оценки состава продуктов газификации используют понятия "идеальных" генераторных газов, условно считая, что необратимой конверсии подвергается чистый углерод воздушный газ 2С + О2 + 3,76N2 2CO + 3,76N2 + 219 кДж/моль
водяной газ С + Н2О СО + Н2 -133 кДж/моль
полуводяной газ 3,65C + O2 + 1,65H2O + 3,76N2 3,65CO + 1,65H2 + 3,76N2
оксиводяной газ 3,65С + О2 + 1,65Н2О 3,65СО + 1,65Н2.
Схема
установки для получения газа из твёрдых
горючих ископаемых
1 - газогенератор; 2 - стояк охладительной ступени; 3 - коллектор сырого газа; 4 -
газопровод с электрическим фильтрам; 5 - электрофильтр; 6 - газопровод к скрубберам; 7
— трехступенчатый скруббер; 8 - коллектор очищенного газа; 9 - газодувка; 10 —
каплеуловитель; 11 - газопровод к потребителю; 12 - воздушный вентилятор; 13 -
воздухопровод к газогенераторам; 14 - паровая магистраль низкого давления; 15 —
паросборник; 16 - смеситель пара и воздуха.
22. Реакции протекающие при восстановление железа из руд. Восстановление оксидов железа водородом. Факторы влияющие на процессы восстановления. Способы восстановления.
Восстановление железа. Этот процесс происходит последовательно от высших оксидов к низшим и далее к чистому металлу : Fe2O3 – Fe3O4 – FeO – Fe Главными восстановителями железа в доменной печи являются оксид углерода(I) и твердый углерод кокса. Оксид углерода(I) образуется при взаимодействии углекислого газа с раскалённым коксом: C + CO2=2CO Восстановление оксидом углерода называется косвенным (непрямым) восстановлением и происходит по реакциям 3Fe2O3 + CO = 2Fe3O4 + CO2 + Q; Fe3O4 + CO = 3FeO + CO2 - Q; FeO + CO = Fe + CO2 + Q. Восстановление Fe2O3 начинается при сравнительно низких температурах (400-5000С) в верхней части шахты печи. По мере опускания рудных материалов повышаются температура и содержание СО в доменных газах; при этом создаются условия для окончательного восстановления железа. Эти процессы заканчиваются в нижней части шахты печи при температурах около 900-9500 С. Значение косвенного восстановления очень велико. В зависимости от условий работы печи оксидом углерода СО восстанавливается 60-80% всего железа. Остальная часть железа восстанавливается твердым углеродом. Восстановление твердым углеродом называется прямым восстановлением. Оно происходит при температурах выше 950-10000 С (зона распара печи) по реакции FeO + C = Fe + CO – Q. Следует отметить, что эта реакция отражает лишь конечный результат процесса прямого восстановления, который протекает в две стадии: FeO + CO = Fe + CO2 + Q CO2 + C = 2CO– Q FeO + C = Fe + CO2 – Q Таким образом, при прямом восстановлении расходуется только углерод кокса, хотя реагентом, взаимодействующим с FeO, является оксид углерода СО. Непосредственное восстановление оксидов железа при контакте с углеродом кокса практически не происходит. Уже в шахте доменной печи при температурах выше 400-5000 С наряду с восстановлением железа происходит и его науглероживание за счет оксида углерода СО по реакции: 3Fe + 2CO = Fe3 C + CO2 + Q. Карбид железа Fe3С хорошо растворяется в твердом железе и постепенно образуется сплав железа с углеродом. С увеличением содержания углерода температура плавления сплава значительно понижается и достигает минимального значения 11470С при 4,3%. В зонах печи с высокими температурами – обычно в нижней части шахты – начинается плавление сплава. Жидкий сплав – чугун, стекая вниз, омывает куски раскаленного кокса и дополнительно интенсивно науглероживается. В нем также растворяются восстановленный марганец, кремний, сера и другие примеси. Конечный состав чугуна устанавливается в горне. При этом большое значение имеют состав, свойства и количество шлака.
Метод прямого восстановления железа водородом в наши дни, как технологический процесс, остался без изменения – специально подготовленная, то есть обогащенная, руда, - концентрат, где содержится основной окисел железа восстанавливается в шахтной печи с помощью твердого топлива, как это было в древности, или для этой цели используется конвертированный газ – природный метан, но преобразованный в смесь водорода и угарного газа (СО).
3Fe2O3+H2= 2Fe3O4+H 20 Fe3O4+H2=3FeO+H 2O FeO+H2=Fe+H 2O
