Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
бт бич бест.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
239.65 Кб
Скачать

6.2.2. Анаэробное разложение (см. Также гл. 2 и 9)

Все возрастающая стоимость переработки отходов с помо­щью аэробного разложения и энергетический кризис, с одной стороны, и новые достижения микробиологии и технологии — с другой, возродили интерес к анаэробной переработке. Самая распространенная технология анаэробной переработки — разло­жение ила сточных вод. Эта хорошо разработанная технология! с успехом используется с 1901 г. Однако здесь существует ряд. проблем, обусловленных малой скоростью роста облигатных анаэробных метанобразующих бактерий, которые использу­ются в данной системе. К ним относятся также чувствитель­ность к различным воздействиям и неприспособленность к из­менениям нагрузки. Конверсия субстрата также происходит довольно медленно и поэтому обходится дорого. Некоторые- проблемы связаны с неудачными инженерными решениями. Тем. не менее этот подход представляется перспективным с точки зрения биотехнологии; например, можно добавить к отходам ферменты для повышения эффективности процесса или попы­таться усилить контроль за переработкой путем изменения тех или иных биологических параметров (разд. 6.3).

Анаэробная ферментация отходов или растительных куль­тур, специально выращиваемых для получения энергии, очень перспективна для экономичного получения газообразного топ­лива при умеренных температурах (30—35°С). Эта новая от­расль биотехнологии была развита микробиологами в сотруд­ничестве с инженерами-химиками и механиками, работниками сельского хозяйства и экономистами.

При выращивании сообщества различных бактерий на смеси органических соединений происходят сложные биохимические' реакции (рис. 6.6) Метанобразующие бактерии способны к син­тезу энергоносителя непосредственно из водорода и углекисло­го газа. Микроорганизмы, расщепляющие целлюлозу, синтези­руют жирные кислоты, которые могут подвергаться восстанови­тельному расщеплению до метана и углекислого газа; некото­рые бактерии способны даже образовывать молекулярный водород. Описано сложное, взаимозависимое микробное сообще­ство, в котором можно выделить три группы бактерий: бакте­рии, осуществляющие гидролиз и брожение, бактерии, образую­щие водород и уксусную кислоту, а также водородотрофные,: метанобразующие бактерии. Метанобразующие бактерии рас­тут медленно и очень чувствительны к резким изменениям за­грузки реактора и накоплению водорода. Можно надеяться,, что усовершенствование конструкции реактора и контроль за процессом помогут уменьшить колебания загрузки реактора » позволят контролировать ее, определяя содержание водорода й

промежуточных продуктов типа пропионовой и масляной кис­лот. Проблемы перегрузки, особенно существенные в случае промышленных стоков, можно обойти, увеличивая скорости «борота и применяя в качестве буферных систем сточные воды химических предприятий и бытовые сточные воды. Для увели­чения метаногенной активности бактерий можно использовать обычные методы отбора или методы генетической инженерии. Оценить возможность использования данного процесса при пе­реработке смешанных отходов, а также охарактеризовать по­требности в питательных веществах и усовершенствовать на­чальный этап процесса за счет уменьшения количества необ­ходимого микробного посевного материала поможет дальнейшее изучение физиологии и экологии участвующих в процессе микроорганизмов.

Липиды Лигиины Белки

I I I

.Высокомолекулярные. Ароматические Аминокислоты

метан + углекислый ГАЗ

Рис. 6.6. Биохимическое расщепление отдельных соединений до метана и угле­кислого газа при анаэробном разложении отходов.

Для получения энергии и полезных побочных продуктов можно использовать самые разнообразные отходы и сырье.К культурам, выращиваемым специально в целях конверсии энергии в газообразное топливо, относится кассава; конечными продуктами служат метанол или этанол. Некоторые страны, например Бразилия, Австралия и Новая Зеландия, намерены к 2000-му году использовать подобные вещества, получаемые биологическим путем, в качестве основного источника топлива. Сходные проекты обсуждаются и в некоторых европейских странах, например в Финляндии, Швеции и Ирландии.

В Англии работа по биоконверсии энергии проводится в рамках Программы по использованию солнечной энергии (ми­нистерства энергетики); за счет этой программы финансиру­ются и проекты ЕЭС по получению энергии биологическими способами. В США используется множество подходов; так, од­но очистное сооружение за счет биологической конверсии бы­тового мусора позволяет получить газ в количестве, достаточ­ном для обеспечения им 12 тыс. домов. Основные микробиоло­гические и технологические проблемы этой технологии и пер­спективы ее применения в развивающихся странах были рас­смотрены на Первой международной конференции по анаэроб­ному разложению, состоявшейся в Кардиффе в 1979 г. Анаэроб­ные ферментеры могут применяться также в целях получения промежуточных продуктов для химической промышленности (например, уксусной, молочной и акриловой кислот в качестве химического сырья, идущего на переработку; гл. 4).

Однако широкое использование анаэробных реакторов в целях получения газообразного топлива сдерживается рядом причин. Традиционно в конструкцию реакторов входили тэнки с мешалками, рассчитанные на длительное пребывание перера­батываемого материала. В целях сокращения этого времени были созданы реакторы, в которых переработанные отходы от­деляются от биомассы, используемой повторно. Чтобы процесс был экономически выгодным, должны быть разработаны не­дорогие конструкции, которые не засоряются и включают про­стые в эксплуатации устройства для отвода тепла. Основные усилия в области анаэробной ферментации должны быть на­правлены на изучение этапов, лимитирующих скорость процес­са. На первом из них происходит гидролиз целлюлозы и крах­мала с образованием растворимых органических кислот и спир­та. Вторым лимитирующим этапом может быть образование метана из этих жирных кислот с короткой цепью. Моделирова­ние процесса разложения осложняется тем, что трудно ска­зать, какие микроорганизмы доминируют на том или ином этапе, и установить, какие именно этапы лимитируют скорость процесса. Возможно, в условиях реактора лимитирующими окажутся другие стадии. Крайне важно определить количество образуемых микроорганизмами газов, особенно водорода, уг-

выход

Вход жидкости Выход жидкости

Радиальная опорная балка Емкость из полимерной пленки Изолирующая панель Стальная сетка Арматура

Бетонный кольцевой Фундамент

Изопирующая пленка

Теплообменник

Рис. 6.7. Три типа установок, использующихся при очистке сточных вод пище­вой промышленности. А. Анаэробный фильтр. Б. Упрощенная схема установки, в которой используется перемешивание с помощью винтового насоса и вытяж­ной трубы. Образование пены контролируется диспергированием содержимого реактора над поверхностью. В. Высокоскоростной реактор Коулзэрда.

лекислого газа и сероводорода, который ингибирует активность метанобразующих бактерий. Недавно было проведено исследо­вание анаэробного превращения ряда субстратов культурами известных микроорганизмов. Это очень сложный процесс; из

природных систем было выделено много новых участвующих в нем типов бактерий.

4 Выход газа

Рис, 6.8. Типы реакторов для переработки отходов животноводческих ферм .(Л) и различных стоков (Б).

Промышленное применение систем анаэробного разложения неуклонно возрастает; они используются при переработке от­ходов животноводческих ферм и промышленных, в том числе пищевых, отходов, а также для переработки культур, специаль­но выращиваемых для получения энергии. На рис. 6.7, 6.8 и 6.9

схематически представлены некоторые из имеющихся в продаже установок. Конструкция реакторов была существенно усовер­шенствована, что увеличило их эффективность на 300%. Многие новые модели еще не вышли из стен лабораторий или находят­ся на стадии производственных испытаний, однако некоторые

полномасштабные системы уже работают и имеются в про­даже.

Получение энергии из отходов представляет несомненный интерес для развивающихся стран, поскольку эту энергию мож­но извлекать и из природных продуктов. Сотрудничество меж­ду развитыми и развивающимися странами постоянно возрас­тает. В развивающихся странах созданы учерждения для

Сточные воды протекают только чёрез седиментационные камеры

Я

Предохранительный

Реактор поршневого типа

Рис. 6.9. Анаэробное разложение ила, образовавшегося в сточных водах (Л), и отходов животноводческих ферм (Б).

А

практического использования технологий, разработанных глав­ным образом в Европе и Америке. Некоторые развивающиеся страны ведут самостоятельные исследования в этой сфере и сегодня лидируют в области фундаментальных разработок по возобновляемым источникам энергии.нее особенно важно, поскольку самоосаждающиеся клетки легко отделить простым отстаиванием, не используя дорогие и энерго­емкие центрифуги. Основной способ улучшения производства по-прежнему состоит в селекции устойчивых штаммов дрожжей. Неустойчивость частично обусловлена осмотическими эффекта­ми, а частично — влиянием накопленного спирта на проницае­мость мембран. Один из возможных выходов заключается в рас­ширении набора используемых организмов (путем включения, например, 1. тоЬШз, видов С1о51гШит и т. п.). Другой путь — использование генетических методов для передачи полезных ка­честв от различных дрожжей и бактерий дрожжами 5. сегеу1- з1ае. Вторая возможность кажется особенно привлекательной, так как при работе с этими дрожжами промышленностью на­коплен большой опыт. Кроме того, хорошо изучен их жизненный цикл и генетика, получены плазмидные векторы. Следует ска­зать, что многие используемые промышленностью штаммы дрожжей являются полиплоидными, не принадлежат к опреде­ленному типу скрещивания, а жизнеспособность образуемых ими спор низка. Все это затрудняет их генетический анализ и улучшение при помощи обычных методов скрещивания, что и заставляет обратиться к рекомбинантным методам. Сейчас ве­дутся эксперименты по переносу генов амилазы и целлюлазы в клетки дрожжей.

Что касается самого брожения, то уже выполнена большая работа для систем с иммобилизованными клетками, что позво­лит сделать процесс непрерывным, без повторного использова­ния клеток. Разрабатываются также системы с повторным ис­пользованием дрожжей и отгонкой спирта при пониженном дав­лении (вакуумное брожение). Сложности в разработке обеих систем связаны с интенсивным выделением СОг, который нуж­но удалять, и с необходимостью контролировать рост клеток. Нужна очищенная, не содержащая взвешенных частиц стериль­ная питательная среда. Далее, немалые затруднения возникают из-за высокой стоимости среды, поскольку для достижения большой продуктивности нужны высокие степени разведения, а при высоком разведении плохо используется субстрат. По этим причинам, возможно, придется остановиться на серийном выращивании. В случае микробного заражения потребуется си­стема дублирования. Учитывая все это, сегодня подобные систе­мы вряд ли будут экономически конкурентоспособными.

Все эти проблемы придется решать биотехнологам, исполь­зуя опыт и микробиологов, и инженеров.