Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Matematika_Mni-2_kurs_ZAOChNOE.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.36 Mб
Скачать

Вопросы к экзамену

  1. Производная. Непрерывность и дифференцируемость функции.

  2. Производная сложной и обратной функций.

  3. Экономический смысл производной. Использование производной в экономике.

  4. Основные теоремы дифференциального исчисления (без доказательств).

  5. Возрастание и убывание функции. Поиск интервалов монотонности.

  6. Экстремум функции. Необходимое условие экстремума. Поиск экстремума.

  7. Экстремум функции. Достаточные условия экстремума. Поиск наибольшего и наименьшего значений функции.

  8. Выпуклость функции. Точки перегиба.

  9. Асимптоты графика функции.

  10. Общая схема исследования функции.

  11. Дифференциал функции. Геометрический и экономический смысл дифференциала.

  12. Функция Кобба-Дугласа.

  13. Кривая Лоренца.

  14. Функции нескольких переменных. Область определения. Линии уровней.

  15. Частные производные и дифференциал функции нескольких переменных.

  16. Производная сложной функции нескольких переменных.

  17. Производная по направлению. Градиент функции.

  18. Экстремум функции нескольких переменных.

  19. Наибольшее и наименьшее значения функции нескольких переменных.

  20. Условный экстремум. Метод множителей Лагранжа.

  21. Общая задача линейного программирования.

  22. Невырожденный и вырожденный опорные планы, оптимальный план, целевая функция.

  23. Геометрическая интерпретация задачи линейного программирования. Выпуклое множество.

  24. Симплексный метод решения задачи линейного программирования. Признак оптимальности в симплексном методе.

  25. Порядок построения первоначального опорного плана в задаче линейного программирования.

  26. Порядок пересчета элементов симплексной таблицы.

  27. Порядок определения ведущего (разрешающего) столбца и ведущей (разрешающей) строки симплексной таблицы.

  28. Экономическая интерпретация двойственной задачи к задаче планирования производства.

  29. Математические модели прямой и двойственной задач линейного программирования.

  30. Порядок построения двойственной задачи линейного программирования.

  31. Сопряженные пары переменных прямой и двойственной задач линейного программирования.

  32. Транспортная задача линейного программирования и ее математическая модель.

  33. Условия разрешимости транспортной задачи. Открытая и закрытая задачи.

  34. Порядок построения первоначального опорного плана транспортной задачи методом наименьших тарифов.

  35. Критерий оптимальности транспортной задачи и метод потенциалов.

  36. Порядок перехода к новому плану в транспортной задаче.

  37. Построение циклов и перераспределение поставок груза.

  38. Модель межотраслевого баланса. Таблица МОБ.

  39. Коэффициенты прямых и косвенных затрат в модели МОБ.

Литература Основная

  1. Красс М.С, Чупрынов Б.П. Математика для экономического бакалавриата: Учебник. – М.: ИНФРА-М, 2011.

  2. Исследование операций в экономике. Под ред. Н.Ш. Кремера.

  3. Журбенко Л.Н. и др. Математика в примерах и задачах: Учебное пособие. – М.: ИНФРА-М, 2009.

  4. Клюшин В.Л. Высшая математика для экономистов: Учебное пособие. – РУДН. – М.: ИНФРА-М, 2006.

  5. Кремер Н.Ш. Высшая математика для экономистов: Учебник для вузов / Н.Ш. Кремер и др. // под ред. Н.Ш. Кремера. – М.: ЮНИТИ, 2004. – 471 с.

  6. Кремер Н.Ш. Практикум по высшей математике для экономистов: Учебное пособие для вузов / Н.Ш. Кремер и др. // под ред. Н.Ш. Кремера. – М.: ЮНИТИ-ДАНА, 2004. – 423 с.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]