
- •1 Основные понятия
- •1.1 Происхождение и понимание термина «искусственный интеллект»
- •1.2 Подходы к пониманию проблемы
- •Тест Тьюринга и интуитивный подход
- •Символьный подход
- •Логический подход
- •Агентно-ориентированный подход
- •Гибридный подход
- •1.3 Модели и методы исследований Символьное моделирование мыслительных процессов
- •Работа с естественными языками
- •Представление и использование знаний
- •Машинное обучение
- •Биологическое моделирование искусственного интеллекта
- •Робототехника
- •Машинное творчество
- •Другие области исследований
- •Современный искусственный интеллект
- •Некоторые из самых известных ии-систем:
- •1.4. Классификация интеллектуальных систем
- •1.5 Методы поиска решений
- •Генетические алгоритмы
- •2. Представление знаний в системах искусственного интеллекта
- •2.1 Представление знаний
- •Формальная (Аристотелева) логика и логика высказываний
- •Как упростить логическую формулу?
- •Как решать логические задачи?
- •Решение логических задач средствами алгебры логики
- •Решение логических задач табличным способом
- •Решение логических задач с помощью рассуждений
- •Логика предикатов
- •3 Логическое программирование на прологе
- •Объекты данных
- •Представление списков
- •Некоторые операции над списками
- •Ограничение перебора
- •Пример Пролог программы
- •4 Логика предикатов второго порядка
- •5. Нечеткая логика
- •Нечеткие множества
- •Основные характеристики нечетких множеств
- •Методы построения функций принадлежности нечетких множеств
- •Операции над нечеткими множествами
- •Наглядное представление операций над нечеткими множествами
- •Свойства операций и
- •Нечеткая и лингвистическая переменные
- •Нечеткие высказывания и нечеткие модели систем
- •Нечеткая база знаний
- •6 Байесовы сети
- •6.1. Простейший логический вывод
- •6.2. Распространение вероятностей в эс
- •6.3. Последовательное распространение вероятностей
- •6.4. Экспертные системы, использующие субъективные вероятности
- •6.5 Байесовские сети доверия как средство разработки эс
- •6.5.1. Основные понятия и определения
- •6.5.2. Пример построения простейшей байесовской сети доверия
- •6.5.3. Процесс рассуждения (вывода) в байесовских сетях доверия
- •6.5.4. Байесовские сети доверия как одно из направлений современных экспертных систем
- •6.6 Сети доверия с условными гауссовскими переменными
- •6.6.1. Непрерывные случайные величины
- •6.6.2. Непрерывные гауссовские переменные
- •6.6.3. Числовые характеристики случайных величин
- •6.6.4. Совместное использование дискретных и непрерывных переменных в байесовских сетях доверия
- •6.6.5. Логический вывод в байесовских сетях доверия с непрерывными и дискретными состояниями
- •6.7 Экспертные системы на основе теории Демстера-Шеффера
- •6.7.1. Предпосылки возникновения новой теории.
- •6.7.2. Основы теории Демстера-Шеффера
- •6.7.3. Меры доверия и правдоподобия в тдш
- •6.7.4. Отличие тдш от теории вероятностей
- •6.7.5. Связь между тдш и классической теорией вероятностей
- •6.7.6. Комбинация функций доверия
- •7 Решатели проблем, основанных на знаниях
- •7.1 Семантические сети
- •7.2 Фреймы
- •7.3 Нейронные сети
- •7.4 Экспертные системы
- •Модель экспертных систем
- •7 Распознание образов Контурный анализ
- •Код Фримена
- •Современные программные и инструментальные средства создания искусственного интеллекта
6.4. Экспертные системы, использующие субъективные вероятности
Для того, чтобы использовать теорию вероятности для представления неопределённостей, разработчики ЭС должны получить все априорные и условные вероятности от экспертов. Хотя они предполагают условную независимость для уменьшения числа требуемых вероятностных оценок, все же число оценок, требуемых для них, остаётся достаточно большим.
Таким образом не является сюрпризом, что мало ЭС используют теорию субъективных вероятностей в прямом виде и многие из этих систем могут решать только относительно не сложные проблемы. В 70-е годы была разработана компьютерная программа для диагностики, использующая статистические данные. Эта программа избежала комбинаторного взрыва путём введения ограничений до 7 диагнозов (уровней).
Более современная ЭС Pathfinder также использует теорию субъективных вероятностей. Без предположения условной независимости среди симптомов Pathfinder диагностирует 63 заболевания лимфы с 110 симптомами. Эта система использует диаграммы влияния. Это относительно новый инструмент, позволяющий байесовским исследователям и аналитикам по принятию решений визуализовать вероятностные зависимости в принятии решения и определить информационное состояние, для которых предполагается независимость. IDES — другая экспертная система, основанная на диаграммах влияния, которая была разработана в Беркли в 1990г.
Основная сложность в реализации субъективных вероятностей – это огромное число вероятностей, которые должны быть получены для построения БЗ. Если, для примера, некоторая область медицинских диагнозов имеет 100 диагнозов и 700 симптомов, то, по крайне мере, 70100 значений вероятностей (70000 условных + 100 априорных) должны быть получены. Кроме того в старых системах необходимо было условие независимости симптомов, что редко в реальности выполняется.
Сети доверия — это новый инструмент для решения перечисленных проблем, в которых регулируются информационные потоки. В настоящее время Пиэрл (Pearl) показал, что при представлении информации в базе знаний при помощи байесовских сетей можно создать согласованную и непротиворечивую вероятностную базу знаний без необходимости в предположении условной независимости.
6.5 Байесовские сети доверия как средство разработки эс
6.5.1. Основные понятия и определения
Байесовские сети доверия - Bayesian Believe Network - используются в тех областях, которые характеризуются наследованной неопределённостью. Эта неопределённость может возникать вследствие:
неполного понимания предметной области;
неполных знаний;
когда задача характеризуется случайностью.
Таким образом, байесовские сети доверия (БСД) применяют для моделирования ситуаций, содержащих неопределённость в некотором смысле. Для байесовских сетей доверия иногда используется ещё одно название причинно-следственная сеть, в которых случайные события соединены причинно-следственными связями.
Соединения методом причин и следствий позволяют более просто оценивать вероятности событий. В реальном мире оценивание наиболее часто делается в направлении от "наблюдателя" к "наблюдению", или от "эффекта" к "следствию", которое в общем случае более сложно оценить, чем направление "следствие -> эффект", то есть в направлении от следствии.
Рис.6.1. Пример простейшей байесовской сети доверия.
Рассмотрим
пример сети (рис.6.1), в которой вероятность
пребывания вершины "e" в различных
состояниях
зависит
от состояний
вершин
"c" и "d" и определяется
выражением:
где
-
вероятность пребывания в состоянии
в
зависимости от состояний
.
Так как события, представленные вершинами
"c" и "d" независимы, то
Рис.6.2. Двухуровневая БСД.
Рассмотрим
пример более сложной сети (рис.6.2). Данный
рисунок иллюстрирует условную
независимость событий. Для оценки
вершин "c" и "d" используются
те же выражения, что и для вычисления
,
тогда:
Из
этих выражений видно, что вершина "e"
условно не зависит от вершин
,
так как нет стрелок непосредственно
соединяющих эти вершины.
Рассмотрев эти примеры попробуем теперь более точно определить основные понятия, используемые в БСД. Байесовские сети доверия - это направленный ациклический граф, обладающий следующими свойствами:
каждая вершина представляет собой событие, описываемое случайной величиной, которая может иметь несколько состояний;
все вершины, связанные с "родительскими" определяются таблицей условных вероятностей (ТУВ) или функцией условных вероятностей (ФУВ);
для вершин без "родителей" вероятности её состояний являются безусловными ( маргинальными).
Другими словами, в байесовских сетях доверия вершины представляют собой случайные переменные, а дуги - вероятностные зависимости, которые определяются через таблицы условных вероятностей. Таблица условных вероятностей каждой вершины содержит вероятности состояний этой вершины при условии состояний её "родителей".