
- •1 Основные понятия
- •1.1 Происхождение и понимание термина «искусственный интеллект»
- •1.2 Подходы к пониманию проблемы
- •Тест Тьюринга и интуитивный подход
- •Символьный подход
- •Логический подход
- •Агентно-ориентированный подход
- •Гибридный подход
- •1.3 Модели и методы исследований Символьное моделирование мыслительных процессов
- •Работа с естественными языками
- •Представление и использование знаний
- •Машинное обучение
- •Биологическое моделирование искусственного интеллекта
- •Робототехника
- •Машинное творчество
- •Другие области исследований
- •Современный искусственный интеллект
- •Некоторые из самых известных ии-систем:
- •1.4. Классификация интеллектуальных систем
- •1.5 Методы поиска решений
- •Генетические алгоритмы
- •2. Представление знаний в системах искусственного интеллекта
- •2.1 Представление знаний
- •Формальная (Аристотелева) логика и логика высказываний
- •Как упростить логическую формулу?
- •Как решать логические задачи?
- •Решение логических задач средствами алгебры логики
- •Решение логических задач табличным способом
- •Решение логических задач с помощью рассуждений
- •Логика предикатов
- •3 Логическое программирование на прологе
- •Объекты данных
- •Представление списков
- •Некоторые операции над списками
- •Ограничение перебора
- •Пример Пролог программы
- •4 Логика предикатов второго порядка
- •5. Нечеткая логика
- •Нечеткие множества
- •Основные характеристики нечетких множеств
- •Методы построения функций принадлежности нечетких множеств
- •Операции над нечеткими множествами
- •Наглядное представление операций над нечеткими множествами
- •Свойства операций и
- •Нечеткая и лингвистическая переменные
- •Нечеткие высказывания и нечеткие модели систем
- •Нечеткая база знаний
- •6 Байесовы сети
- •6.1. Простейший логический вывод
- •6.2. Распространение вероятностей в эс
- •6.3. Последовательное распространение вероятностей
- •6.4. Экспертные системы, использующие субъективные вероятности
- •6.5 Байесовские сети доверия как средство разработки эс
- •6.5.1. Основные понятия и определения
- •6.5.2. Пример построения простейшей байесовской сети доверия
- •6.5.3. Процесс рассуждения (вывода) в байесовских сетях доверия
- •6.5.4. Байесовские сети доверия как одно из направлений современных экспертных систем
- •6.6 Сети доверия с условными гауссовскими переменными
- •6.6.1. Непрерывные случайные величины
- •6.6.2. Непрерывные гауссовские переменные
- •6.6.3. Числовые характеристики случайных величин
- •6.6.4. Совместное использование дискретных и непрерывных переменных в байесовских сетях доверия
- •6.6.5. Логический вывод в байесовских сетях доверия с непрерывными и дискретными состояниями
- •6.7 Экспертные системы на основе теории Демстера-Шеффера
- •6.7.1. Предпосылки возникновения новой теории.
- •6.7.2. Основы теории Демстера-Шеффера
- •6.7.3. Меры доверия и правдоподобия в тдш
- •6.7.4. Отличие тдш от теории вероятностей
- •6.7.5. Связь между тдш и классической теорией вероятностей
- •6.7.6. Комбинация функций доверия
- •7 Решатели проблем, основанных на знаниях
- •7.1 Семантические сети
- •7.2 Фреймы
- •7.3 Нейронные сети
- •7.4 Экспертные системы
- •Модель экспертных систем
- •7 Распознание образов Контурный анализ
- •Код Фримена
- •Современные программные и инструментальные средства создания искусственного интеллекта
6 Байесовы сети
6.1. Простейший логический вывод
Рассмотрим случай, когда все правила в экспертной системе отражаются в форме:
Если < H является истинной > То < E будет наблюдаться с вероятностью р >.
Очевидно, если H произошло, то это правило говорит о том, что событие E происходит с вероятностью p. Но что будет, если состояние H неизвестно, а E произошло? Использование теоремы Байеса позволяет вычислить вероятность того, что H истинно. Замена «A» и «B» на «H» и «E» не существенна для формулы Байеса, но с её помощью мы можем покинуть общую теорию вероятности и перейти к анализу вероятностных вычислений в ЭС. В этом контексте:
· H – событие, заключающееся в том, что данная гипотеза верна;
· E – событие, заключающееся в том, что наступило определённое доказательство (свидетельство), которое может подтвердить правильность указанной гипотезы.
Переписывая формулу Байеса в терминах гипотез и свидетельств, получим:
.
Это равенство устанавливает связь гипотезы со свидетельством и, в то же время, наблюдаемого свидетельства с пока ещё не подтверждённой гипотезой. Эта интерпретация предполагает также определение априорной вероятностигипотезы p(H), назначаемой H до наблюдения или получения некоторого факта.
В экспертных системах вероятности, требуемые для решения некоторой проблемы, обеспечивается экспертами и запоминается в базе знаний. Эти вероятности включают:
· априорные вероятности всех возможных гипотез p(H);
· условные вероятности возникновения свидетельств при условии существования каждой из гипотез p(E | H).
Так, например, в медицинской диагностике эксперт должен задать априорные вероятности всех возможных болезней в некоторой медицинской области. Кроме того, должны быть определены условные вероятности проявления тех или иных симптомов при каждой из болезней. Условные вероятности должны быть получены для всех симптомов и болезней, предполагая, что все симптомы независимы в рамках одной болезни.
Два события E1 и E2 являются условно независимыми, если их совместная вероятность при условии некоторой гипотезы H равна произведению условных вероятностей эти событий при условии H, то есть
p(E1 E2 | H) = p(E1| H) × p(E2 | H).
Пользователи дают ЭС информацию о наблюдениях (наличии определённых симптомов) и ЭС вычисляет p(Hi|Ej ... Ek) для всех гипотез (H1, ... ,Hm) в свете предъявленных симптомов (Ej, ... ,Ek) и вероятностях, хранимых в БЗ.
Вероятность p(Hi | Ej ... Ek) называется апостериорной вероятностью гипотез Hi по наблюдениям (Ej, ... ,Ek). Эти вероятности дают сравнительное ранжирование всех возможных гипотез, то есть гипотез с ненулевыми апостериорными вероятностями. Результатом вывода ЭС является выбор гипотезы с наибольшей вероятностью.
Однако, приведённая выше формула Байеса ограничена в том, что каждое свидетельство влияет только на одну гипотезу. Можно обобщить это выражение на случай множественных гипотез (H1, ... ,Hm) и множественных свидетельств (E1, ..., En). Вероятности каждой из гипотез при условии возникновения некоторого конкретного свидетельства E можно определить из выражения:
.
а в случае множественных свидетельств:
.
К сожалению данное выражение имеет ряд недостатков. Так, знаменатель требует от нас знания условных вероятностей всех возможных комбинаций свидетельств и гипотез, что делает правило Байеса малопригодным для ряда приложений. Однако в тех случаях когда возможно предположить условную независимость свидетельств, правило Байеса можно привести к более простому виду:
.
Вместе с тем предположения о независимости событий в ряде случаев подавляют точности суждений и свидетельств в ЭС.