
- •1 Основные понятия
- •1.1 Происхождение и понимание термина «искусственный интеллект»
- •1.2 Подходы к пониманию проблемы
- •Тест Тьюринга и интуитивный подход
- •Символьный подход
- •Логический подход
- •Агентно-ориентированный подход
- •Гибридный подход
- •1.3 Модели и методы исследований Символьное моделирование мыслительных процессов
- •Работа с естественными языками
- •Представление и использование знаний
- •Машинное обучение
- •Биологическое моделирование искусственного интеллекта
- •Робототехника
- •Машинное творчество
- •Другие области исследований
- •Современный искусственный интеллект
- •Некоторые из самых известных ии-систем:
- •1.4. Классификация интеллектуальных систем
- •1.5 Методы поиска решений
- •Генетические алгоритмы
- •2. Представление знаний в системах искусственного интеллекта
- •2.1 Представление знаний
- •Формальная (Аристотелева) логика и логика высказываний
- •Как упростить логическую формулу?
- •Как решать логические задачи?
- •Решение логических задач средствами алгебры логики
- •Решение логических задач табличным способом
- •Решение логических задач с помощью рассуждений
- •Логика предикатов
- •3 Логическое программирование на прологе
- •Объекты данных
- •Представление списков
- •Некоторые операции над списками
- •Ограничение перебора
- •Пример Пролог программы
- •4 Логика предикатов второго порядка
- •5. Нечеткая логика
- •Нечеткие множества
- •Основные характеристики нечетких множеств
- •Методы построения функций принадлежности нечетких множеств
- •Операции над нечеткими множествами
- •Наглядное представление операций над нечеткими множествами
- •Свойства операций и
- •Нечеткая и лингвистическая переменные
- •Нечеткие высказывания и нечеткие модели систем
- •Нечеткая база знаний
- •6 Байесовы сети
- •6.1. Простейший логический вывод
- •6.2. Распространение вероятностей в эс
- •6.3. Последовательное распространение вероятностей
- •6.4. Экспертные системы, использующие субъективные вероятности
- •6.5 Байесовские сети доверия как средство разработки эс
- •6.5.1. Основные понятия и определения
- •6.5.2. Пример построения простейшей байесовской сети доверия
- •6.5.3. Процесс рассуждения (вывода) в байесовских сетях доверия
- •6.5.4. Байесовские сети доверия как одно из направлений современных экспертных систем
- •6.6 Сети доверия с условными гауссовскими переменными
- •6.6.1. Непрерывные случайные величины
- •6.6.2. Непрерывные гауссовские переменные
- •6.6.3. Числовые характеристики случайных величин
- •6.6.4. Совместное использование дискретных и непрерывных переменных в байесовских сетях доверия
- •6.6.5. Логический вывод в байесовских сетях доверия с непрерывными и дискретными состояниями
- •6.7 Экспертные системы на основе теории Демстера-Шеффера
- •6.7.1. Предпосылки возникновения новой теории.
- •6.7.2. Основы теории Демстера-Шеффера
- •6.7.3. Меры доверия и правдоподобия в тдш
- •6.7.4. Отличие тдш от теории вероятностей
- •6.7.5. Связь между тдш и классической теорией вероятностей
- •6.7.6. Комбинация функций доверия
- •7 Решатели проблем, основанных на знаниях
- •7.1 Семантические сети
- •7.2 Фреймы
- •7.3 Нейронные сети
- •7.4 Экспертные системы
- •Модель экспертных систем
- •7 Распознание образов Контурный анализ
- •Код Фримена
- •Современные программные и инструментальные средства создания искусственного интеллекта
Операции над нечеткими множествами
Содержание Пусть A и B - нечеткие множества на универсальном множестве E. Говорят, что A содержится в B, если x E A(x) <B(x). Обозначение: A B. Иногда используют термин "доминирование", то есть в случае если A B, говорят, что B доминирует A.
Равенство
A и B равны, если xE A(x) = B (x). Обозначение: A = B.
Дополнение
Пусть M = [0,1], A и B - нечеткие множества, заданные на E. A и B дополняют друг друга, если
xA(x)
= 1 - B(x).
Обозначение: B =
или
A =
Очевидно, что = A. (Дополнение определено для M = [0,1], но очевидно, что его можно определить для любого упорядоченного M).
Пересечение
AB - наибольшее нечеткое подмножество, которое содержится одновременно в A и B.
AB(x) = min( A(x), B(x)).
Объединение
А В - наименьшее нечеткое подмножество, которое включает как А, так и В, с функцией принадлежности:
A B(x) = max(A(x), B(x)).
Разность
А - B = А с функцией принадлежности:
A-B(x) = A (x) = min( A(x), 1 - B(x)).
Дизъюнктивная сумма
АB = (А - B)(B - А) = (А ) ( B) с функцией принадлежности:
A-B(x) = max{[min{A(x), 1 - B(x)}];[min{1 - A(x), B(x)}] }
Примеры
Пусть:
A = 0,4/ x1 + 0,2/ x2+0/ x3+1/ x4;
B = 0,7/ x1+0,9/ x2+0,1/ x3+1/ x4;
C = 0,1/ x1+1/ x2+0,2/ x3+0,9/ x4.
Здесь:
1. AB, то есть A содержится в B или B доминирует A, С несравнимо ни с A, ни с B, то есть пари {A, С} и {A, С} - пары недоминируемых нечетких множеств.
2. A B C.
3. = 0,6/ x1 + 0,8/x2 + 1/x3 + 0/x4;
= 0,3/x1 + 0,1/x2 + 0,9/x3 + 0/x4.
4. AB = 0,4/x1 + 0,2/x2 + 0/x3 + 1/x4.
5. АС = 0,7/x1 + 0,9/x2 + 0,1/x3 + 1/x4.
6. А - С = А = 0,3/x1 + 0,1/x2 + 0/x3 + 0/x4;
В - А = С = 0,6/x1 + 0,8/x2 + 0,1/x3 + 0/x4.
7. А В = 0,6/x1 + 0,8/x2 + 0,1/x3 + 0/x4.
Наглядное представление операций над нечеткими множествами
Для нечетких множеств можно применить визуальное представление. Рассмотрим прямоугольную систему координат, на оси ординат которой откладываются значение A(x), на оси абсцисс в произвольном порядке расположены элементы E. Если E по своей природе упорядочено, то этот порядок желательно сохранить в расположении элементов на оси абсцисс. Такое представление делает наглядными простые операции над нечеткими множествами.
Пусть A нечеткий интервал между 5 до 8 и B нечеткое число около 4, как показано на рисунке.
Проиллюстрируем нечеткое множество между 5 и 8 И (AND) около 4 (синяя линия).
Нечеткое множество между 5 и 8 ИЛИ (OR) около 4 показано на следующем рисунке (снова синяя линия).
Следующий рисунок иллюстрирует операцию отрицания. Синяя линия - это ОТРИЦАНИЕ нечеткого множества A.
На следующем рисунке заштрихованная часть соответствует нечеткому множеству A и изображает область значений А и всех нечетких множеств, содержащихся в A. Остальные рисунки изображают соответственно , A , A .
|
|
|
|