
- •1 Основные понятия
- •1.1 Происхождение и понимание термина «искусственный интеллект»
- •1.2 Подходы к пониманию проблемы
- •Тест Тьюринга и интуитивный подход
- •Символьный подход
- •Логический подход
- •Агентно-ориентированный подход
- •Гибридный подход
- •1.3 Модели и методы исследований Символьное моделирование мыслительных процессов
- •Работа с естественными языками
- •Представление и использование знаний
- •Машинное обучение
- •Биологическое моделирование искусственного интеллекта
- •Робототехника
- •Машинное творчество
- •Другие области исследований
- •Современный искусственный интеллект
- •Некоторые из самых известных ии-систем:
- •1.4. Классификация интеллектуальных систем
- •1.5 Методы поиска решений
- •Генетические алгоритмы
- •2. Представление знаний в системах искусственного интеллекта
- •2.1 Представление знаний
- •Формальная (Аристотелева) логика и логика высказываний
- •Как упростить логическую формулу?
- •Как решать логические задачи?
- •Решение логических задач средствами алгебры логики
- •Решение логических задач табличным способом
- •Решение логических задач с помощью рассуждений
- •Логика предикатов
- •3 Логическое программирование на прологе
- •Объекты данных
- •Представление списков
- •Некоторые операции над списками
- •Ограничение перебора
- •Пример Пролог программы
- •4 Логика предикатов второго порядка
- •5. Нечеткая логика
- •Нечеткие множества
- •Основные характеристики нечетких множеств
- •Методы построения функций принадлежности нечетких множеств
- •Операции над нечеткими множествами
- •Наглядное представление операций над нечеткими множествами
- •Свойства операций и
- •Нечеткая и лингвистическая переменные
- •Нечеткие высказывания и нечеткие модели систем
- •Нечеткая база знаний
- •6 Байесовы сети
- •6.1. Простейший логический вывод
- •6.2. Распространение вероятностей в эс
- •6.3. Последовательное распространение вероятностей
- •6.4. Экспертные системы, использующие субъективные вероятности
- •6.5 Байесовские сети доверия как средство разработки эс
- •6.5.1. Основные понятия и определения
- •6.5.2. Пример построения простейшей байесовской сети доверия
- •6.5.3. Процесс рассуждения (вывода) в байесовских сетях доверия
- •6.5.4. Байесовские сети доверия как одно из направлений современных экспертных систем
- •6.6 Сети доверия с условными гауссовскими переменными
- •6.6.1. Непрерывные случайные величины
- •6.6.2. Непрерывные гауссовские переменные
- •6.6.3. Числовые характеристики случайных величин
- •6.6.4. Совместное использование дискретных и непрерывных переменных в байесовских сетях доверия
- •6.6.5. Логический вывод в байесовских сетях доверия с непрерывными и дискретными состояниями
- •6.7 Экспертные системы на основе теории Демстера-Шеффера
- •6.7.1. Предпосылки возникновения новой теории.
- •6.7.2. Основы теории Демстера-Шеффера
- •6.7.3. Меры доверия и правдоподобия в тдш
- •6.7.4. Отличие тдш от теории вероятностей
- •6.7.5. Связь между тдш и классической теорией вероятностей
- •6.7.6. Комбинация функций доверия
- •7 Решатели проблем, основанных на знаниях
- •7.1 Семантические сети
- •7.2 Фреймы
- •7.3 Нейронные сети
- •7.4 Экспертные системы
- •Модель экспертных систем
- •7 Распознание образов Контурный анализ
- •Код Фримена
- •Современные программные и инструментальные средства создания искусственного интеллекта
Нечеткие множества
Пусть E - универсальное множество, x - элемент E, а R - определенное свойство. Обычное (четкое) подмножество A универсального множества E, элементы которого удовлетворяют свойство R, определяется как множество упорядоченной пары A = {A (х)/х}, где A(х) - характеристическая функция, принимающая значение 1, когда x удовлетворяет свойство R, и 0 - в другом случае.
Нечеткое подмножество отличается от обычного тем, что для элементов x из E нет однозначного ответа "нет" относительно свойства R. В связи с этим, нечеткое подмножество A универсального множества E определяется как множество упорядоченной пари A = A = {A(х)/х}, где A(х) - характеристическая функция принадлежности (или просто функция принадлежности), принимающая значение в некотором упорядоченном множестве M (например, M = [0,1]).
Функция принадлежности указывает степень (или уровень) принадлежности элемента x к подмножеству A. Множество M называют множеством принадлежностей. Если M = {0,1}, тогда нечеткое подмножество A может рассматриваться как обычное или четкое множество.
Пример. Рассмотрим множество X всех чисел от 0 до 10. Определим подмножество A множества X всех действительных чисел от 5 до 8.
A = [5,8]
Покажем функцию принадлежности множества A, эта функция ставит в соответствие число 1 или 0 каждому элементу в X, в зависимости от того, принадлежит данный элемент подмножеству A или нет. Результат представлен на следующем рисунке:
М
ожно
интерпретировать элементы, соответствующие
1, как элементы, находящиеся в множестве
A, а элементы, соответствующие 0, как
элементы, не находящиеся в множестве
A.
Эта концепция используется в многих областях. Но существуют ситуации, в которых данной концепции будет не хватать гибкости.
В данном примере опишем множество молодых людей. Формально можно записать так
B = {множество молодых людей}
Поскольку, вообще, возраст начинается с 0, то нижняя граница этого множества должна быть нулем. Верхнюю границу определить сложнее. Сначала установим верхнюю границу, скажем, равную 20 годам. Таким образом, имеем B как четко ограниченный интервал, буквально: B = [0,20]. Возникает вопрос: почему кто-то в свой двадцатилетний юбилей - молодой, а сразу на следующий день уже не молодой? Очевидно, это структурная проблема, и если передвинуть верхнюю границу в другую точку, то можно задать такой же вопрос.
Более естественный путь создания множества B состоит в ослаблении строгого деления на молодых и не молодых. Сделаем это, вынося не только четкие суждения "Да, он принадлежит множеству молодых людей" или "Нет, она не принадлежит множеству молодых людей", но и гибкие формулировки "Да, он принадлежит к довольно молодым людям" или "Нет, он не очень молодой".
Рассмотрим, как с помощью нечеткого множества определить выражение "он еще молодой".
В первом примере мы кодировали все элементы множества с помощью 0 ли 1. Простым способом обобщить данную концепцию является введение значений между 0 и 1. Реально можно даже допустить бесконечное число значений между 0 и 1, в единичном интервале I = [0, 1].
Интерпретация чисел при соотношении всех элементов множества становится теперь сложнее. Конечно, число 1 соответствует элементу, принадлежащему множеству B, а 0 означает, что элемент точно не принадлежит множеству B. Все другие значения определяют степень принадлежности к множеству B. Для наглядности приведем характеристическую функцию множества молодых людей, как и в первом примере.
П
усть
E = {x1, x2, x3, x4, x5 }, M = [0,1]; A - нечеткое
множество, для которого
A(x1)=0,3; A(x2)=0; A(x3)=1; A(x4)=0,5; A(x5)=0,9
Тогда A можно представить в виде:
A = {0,3/x1; 0/x2; 1/x3; 0,5/x4; 0,9/x5 } или
A = 0,3/x1 + 0/x2 + 1/x3 + 0,5/x4 + 0,9/x5,
(знак "+" является операцией не сложения, а объединения) или
|
x1 |
x2 |
x3 |
x4 |
x5 |
A = |
0,3 |
0 |
1 |
0,5 |
0,9 |