
- •1 Основные понятия
- •1.1 Происхождение и понимание термина «искусственный интеллект»
- •1.2 Подходы к пониманию проблемы
- •Тест Тьюринга и интуитивный подход
- •Символьный подход
- •Логический подход
- •Агентно-ориентированный подход
- •Гибридный подход
- •1.3 Модели и методы исследований Символьное моделирование мыслительных процессов
- •Работа с естественными языками
- •Представление и использование знаний
- •Машинное обучение
- •Биологическое моделирование искусственного интеллекта
- •Робототехника
- •Машинное творчество
- •Другие области исследований
- •Современный искусственный интеллект
- •Некоторые из самых известных ии-систем:
- •1.4. Классификация интеллектуальных систем
- •1.5 Методы поиска решений
- •Генетические алгоритмы
- •2. Представление знаний в системах искусственного интеллекта
- •2.1 Представление знаний
- •Формальная (Аристотелева) логика и логика высказываний
- •Как упростить логическую формулу?
- •Как решать логические задачи?
- •Решение логических задач средствами алгебры логики
- •Решение логических задач табличным способом
- •Решение логических задач с помощью рассуждений
- •Логика предикатов
- •3 Логическое программирование на прологе
- •Объекты данных
- •Представление списков
- •Некоторые операции над списками
- •Ограничение перебора
- •Пример Пролог программы
- •4 Логика предикатов второго порядка
- •5. Нечеткая логика
- •Нечеткие множества
- •Основные характеристики нечетких множеств
- •Методы построения функций принадлежности нечетких множеств
- •Операции над нечеткими множествами
- •Наглядное представление операций над нечеткими множествами
- •Свойства операций и
- •Нечеткая и лингвистическая переменные
- •Нечеткие высказывания и нечеткие модели систем
- •Нечеткая база знаний
- •6 Байесовы сети
- •6.1. Простейший логический вывод
- •6.2. Распространение вероятностей в эс
- •6.3. Последовательное распространение вероятностей
- •6.4. Экспертные системы, использующие субъективные вероятности
- •6.5 Байесовские сети доверия как средство разработки эс
- •6.5.1. Основные понятия и определения
- •6.5.2. Пример построения простейшей байесовской сети доверия
- •6.5.3. Процесс рассуждения (вывода) в байесовских сетях доверия
- •6.5.4. Байесовские сети доверия как одно из направлений современных экспертных систем
- •6.6 Сети доверия с условными гауссовскими переменными
- •6.6.1. Непрерывные случайные величины
- •6.6.2. Непрерывные гауссовские переменные
- •6.6.3. Числовые характеристики случайных величин
- •6.6.4. Совместное использование дискретных и непрерывных переменных в байесовских сетях доверия
- •6.6.5. Логический вывод в байесовских сетях доверия с непрерывными и дискретными состояниями
- •6.7 Экспертные системы на основе теории Демстера-Шеффера
- •6.7.1. Предпосылки возникновения новой теории.
- •6.7.2. Основы теории Демстера-Шеффера
- •6.7.3. Меры доверия и правдоподобия в тдш
- •6.7.4. Отличие тдш от теории вероятностей
- •6.7.5. Связь между тдш и классической теорией вероятностей
- •6.7.6. Комбинация функций доверия
- •7 Решатели проблем, основанных на знаниях
- •7.1 Семантические сети
- •7.2 Фреймы
- •7.3 Нейронные сети
- •7.4 Экспертные системы
- •Модель экспертных систем
- •7 Распознание образов Контурный анализ
- •Код Фримена
- •Современные программные и инструментальные средства создания искусственного интеллекта
5. Нечеткая логика
Наверное, самым впечатляющим у человеческого интеллекта является способность принимать правильные решения в условиях неполной и нечеткой информации. Построение моделей приближенных размышлений человека и использование их в компьютерных системах представляет сегодня одну из важнейших проблем науки.
Основы нечеткой логики были заложены в конце 60-х лет в работах известного американского математика Латфи Заде. Исследования такого рода было вызвано возрастающим неудовольствием экспертными системами. Хваленый "искусственный интеллект", который легко справлялся с задачами управления сложными техническими комплексами, был беспомощным при простейших высказываниях повседневной жизни, типа "Если в машине перед тобой силит неопытный водитель - держись от нее подальше". Для создания действительно интеллектуальных систем, способных адекватно взаимодействовать с человеком, был необходим новый математический аппарат, который переводит неоднозначные жизненные утверждения в язык четких и формальных математических формул. Первым серьезным шагом в этом направлении стала теория нечетких множеств, разработанная Заде. Его работа "Fuzzy Sets", опубликованная в 1965 году в журнале "Information and Control", заложила основы моделирования интеллектуальной деятельности человека и стала начальным толчком к развитию новой математической теории. Он же дал и название для новой области науки - "fuzzy logic" (fuzzy - нечеткий, размытый, мягкий). Чтобы стать классиком, надо немного опередить свое время. Существует легенда о том, каким образом была создана теория "нечетких множеств". Один раз Заде имел длинную дискуссию со своим другом относительно того, чья из жен более привлекательна. Термин "привлекательная" является неопределенным и в результате дискуссии они не смогли прийти к удовлетворительному итогу. Это заставило Загде сформулировать концепцию, которая выражает нечеткие понятия типа "привлекательная" в числовой форме. Дальнейшие работы профессора Латфи Заде и его последователей заложили фундамент новой теории и создали предпосылки для внедрения методов нечеткого управления в инженерную практику. Аппарат теории нечетких множеств, продемонстрировав ряд многообещающих возможностей применения - от систем управления летательными аппаратами до прогнозирования итогов выборов, оказался вместе с тем сложным для воплощения. Учитывая имеющийся уровень технологии, нечеткая логика заняла свое место среди других специальных научных дисциплин - где-то посредине между экспертными системами и нейронными сетями. Свое второе рождение теория нечеткой логики пережила в начале восьмидесятых годов, когда несколько групп исследователей (в-основном в США и Япони) всерьез занялись созданием электронных систем различного применения, использующих нечеткие управляющие алгоритмы. Теоретические основы для этого были заложены в ранних работах Коско и других ученых. Третий период начался с конца 80-х годов и до сих пор. Этот период характеризуется бумом практического применения теории нечеткой логики в разных сферах науки и техники. До 90-ого года появилось около 40 патентов, относящихся к нечеткой логике (30 - японских). Сорок восемь японских компаний создают лабораторию LIFE (Laboratory for International Fuzzy Engineering), японское правительство финансирует 5-летнюю программу по нечеткой логике, которая включает 19 разных проектов - от систем оценки глобального загрязнения атмосферы и предвидения землетрясений до АСУ заводских цехов. Результатом выполнения этой программы было появление целого ряда новых массовых микрочипов, базирующихся на нечеткой логике. Сегодня их можно найти в стиральных машинах и видеокамерах, цехах заводов и моторных отсеках автомобилей, в системах управления складскими роботами и боевыми вертолетами
В США развитие нечеткой логики идет по пути создания систем для большого бизнеса и военных. Нечеткая логика применяется при анализе новых рынков, биржевой игре, оценки политических рейтингов, выборе оптимальной ценовой стратегии и т.п. Появились и коммерческие системы массового применения.
Смещение центра исследований нечетких систем в сторону практических применений привело к постановке целого ряда проблем, в частности:
новые архитектуры компьютеров для нечетких вычислений;
элементная база нечетких компьютеров и контроллеров;
инструментальные средства разработки;
инженерные методы расчета и разработки нечетких систем управления, и т.п..