
- •1 Основные понятия
- •1.1 Происхождение и понимание термина «искусственный интеллект»
- •1.2 Подходы к пониманию проблемы
- •Тест Тьюринга и интуитивный подход
- •Символьный подход
- •Логический подход
- •Агентно-ориентированный подход
- •Гибридный подход
- •1.3 Модели и методы исследований Символьное моделирование мыслительных процессов
- •Работа с естественными языками
- •Представление и использование знаний
- •Машинное обучение
- •Биологическое моделирование искусственного интеллекта
- •Робототехника
- •Машинное творчество
- •Другие области исследований
- •Современный искусственный интеллект
- •Некоторые из самых известных ии-систем:
- •1.4. Классификация интеллектуальных систем
- •1.5 Методы поиска решений
- •Генетические алгоритмы
- •2. Представление знаний в системах искусственного интеллекта
- •2.1 Представление знаний
- •Формальная (Аристотелева) логика и логика высказываний
- •Как упростить логическую формулу?
- •Как решать логические задачи?
- •Решение логических задач средствами алгебры логики
- •Решение логических задач табличным способом
- •Решение логических задач с помощью рассуждений
- •Логика предикатов
- •3 Логическое программирование на прологе
- •Объекты данных
- •Представление списков
- •Некоторые операции над списками
- •Ограничение перебора
- •Пример Пролог программы
- •4 Логика предикатов второго порядка
- •5. Нечеткая логика
- •Нечеткие множества
- •Основные характеристики нечетких множеств
- •Методы построения функций принадлежности нечетких множеств
- •Операции над нечеткими множествами
- •Наглядное представление операций над нечеткими множествами
- •Свойства операций и
- •Нечеткая и лингвистическая переменные
- •Нечеткие высказывания и нечеткие модели систем
- •Нечеткая база знаний
- •6 Байесовы сети
- •6.1. Простейший логический вывод
- •6.2. Распространение вероятностей в эс
- •6.3. Последовательное распространение вероятностей
- •6.4. Экспертные системы, использующие субъективные вероятности
- •6.5 Байесовские сети доверия как средство разработки эс
- •6.5.1. Основные понятия и определения
- •6.5.2. Пример построения простейшей байесовской сети доверия
- •6.5.3. Процесс рассуждения (вывода) в байесовских сетях доверия
- •6.5.4. Байесовские сети доверия как одно из направлений современных экспертных систем
- •6.6 Сети доверия с условными гауссовскими переменными
- •6.6.1. Непрерывные случайные величины
- •6.6.2. Непрерывные гауссовские переменные
- •6.6.3. Числовые характеристики случайных величин
- •6.6.4. Совместное использование дискретных и непрерывных переменных в байесовских сетях доверия
- •6.6.5. Логический вывод в байесовских сетях доверия с непрерывными и дискретными состояниями
- •6.7 Экспертные системы на основе теории Демстера-Шеффера
- •6.7.1. Предпосылки возникновения новой теории.
- •6.7.2. Основы теории Демстера-Шеффера
- •6.7.3. Меры доверия и правдоподобия в тдш
- •6.7.4. Отличие тдш от теории вероятностей
- •6.7.5. Связь между тдш и классической теорией вероятностей
- •6.7.6. Комбинация функций доверия
- •7 Решатели проблем, основанных на знаниях
- •7.1 Семантические сети
- •7.2 Фреймы
- •7.3 Нейронные сети
- •7.4 Экспертные системы
- •Модель экспертных систем
- •7 Распознание образов Контурный анализ
- •Код Фримена
- •Современные программные и инструментальные средства создания искусственного интеллекта
1 ОСНОВНЫЕ ПОНЯТИЯ 3
1.1 Происхождение и понимание термина «искусственный интеллект» 3
1.2 Подходы к пониманию проблемы 3
1.3 Модели и методы исследований 5
Современный искусственный интеллект 6
1.4. Классификация интеллектуальных систем 7
1.5 Методы поиска решений 12
2. ПРЕДСТАВЛЕНИЕ ЗНАНИЙ В СИСТЕМАХ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА 24
2.1 Представление знаний 24
Формальная (Аристотелева) логика и логика высказываний 28
Как упростить логическую формулу? 32
Как решать логические задачи? 34
Решение логических задач средствами алгебры логики 34
Решение логических задач табличным способом 35
Решение логических задач с помощью рассуждений 37
Логика предикатов 39
3 ЛОГИЧЕСКОЕ ПРОГРАММИРОВАНИЕ НА ПРОЛОГЕ 41
Объекты данных 41
Представление списков 43
Ограничение перебора 47
Пример Пролог программы 50
4 ЛОГИКА ПРЕДИКАТОВ ВТОРОГО ПОРЯДКА 53
5. НЕЧЕТКАЯ ЛОГИКА 56
Нечеткие множества 57
Основные характеристики нечетких множеств 58
Методы построения функций принадлежности нечетких множеств 59
Операции над нечеткими множествами 60
Наглядное представление операций над нечеткими множествами 60
Свойства операций и 62
Нечеткая и лингвистическая переменные 63
Нечеткие высказывания и нечеткие модели систем 64
Нечеткая база знаний 68
6 БАЙЕСОВЫ СЕТИ 73
6.1. Простейший логический вывод 73
6.2. Распространение вероятностей в ЭС 74
6.3. Последовательное распространение вероятностей 75
6.4. Экспертные системы, использующие субъективные вероятности 76
7 РЕШАТЕЛИ ПРОБЛЕМ, ОСНОВАННЫХ НА ЗНАНИЯХ 92
7.1 Семантические сети 92
7.2 Фреймы 92
7.3 Нейронные сети 93
7.4 Экспертные системы 98
7 РАСПОЗНАНИЕ ОБРАЗОВ 101
Контурный анализ 101
Матрицы и типы изображений 110
Современные программные и инструментальные средства создания искусственного интеллекта 110
1 Основные понятия
Иску́сственный интелле́кт (Artificial intelligence, AI) — наука и технология создания интеллектуальных машин, особенно интеллектуальных компьютерных программ. ИИ связан со сходной задачей использования компьютеров для понимания человеческого интеллекта, но не обязательно ограничивается биологически правдоподобными методами.
1.1 Происхождение и понимание термина «искусственный интеллект»
История искусственного интеллекта как нового научного направления начинается в середине XX века. К этому времени уже было сформировано множество предпосылок его зарождения: среди философов давно шли споры о природе человека и процессе познания мира, нейрофизиологи и психологи разработали ряд теорий относительно работы человеческого мозга и мышления, экономисты и математики задавались вопросами оптимальных расчётов и представления знаний о мире в формализованном виде; наконец, зародился фундамент математической теории вычислений — теории алгоритмов — и были созданы первые компьютеры.
Возможности новых машин в плане скорости вычислений оказались больше человеческих, поэтому в учёном сообществе закрался вопрос: каковы границы возможностей компьютеров и достигнут ли машины уровня развития человека? В 1950 году один из пионеров в области вычислительной техники, английский учёный Алан Тьюринг, пишет статью под названием «Может ли машина мыслить?», в которой описывает процедуру, с помощью которой можно будет определить момент, когда машина сравняется в плане разумности с человеком, получившую название теста Тьюринга.
В СССР работы в области искусственного интеллекта начались в 1960-х годах[5]. В Московском университете и Академии наук был выполнен ряд пионерских исследований, возглавленных Вениамином Пушкиным и Д. А. Поспеловым.
В 1964 году была опубликована работа ленинградского логика Сергея Маслова «Обратный метод установления выводимости в классическом исчислении предикатов», в которой впервые предлагался метод автоматического поиска доказательства теорем в исчислении предикатов.
В 1966 году В. Ф. Турчиным был разработан язык рекурсивных функций Рефал.
До 1970-х годов в СССР все исследования ИИ велись в рамках кибернетики. По мнению Д. А. Поспелова, науки «информатика» и «кибернетика» были в это время смешаны, по причине ряда академических споров. Только в конце 1970-х в СССР начинают говорить о научном направлении «искусственный интеллект» как разделе информатики. При этом родилась и сама информатика, подчинив себе прародительницу «кибернетику». В конце 1970-х создаётся толковый словарь по искусственному интеллекту, трёхтомный справочник по искусственному интеллекту и энциклопедический словарь по информатике, в котором разделы «Кибернетика» и «Искусственный интеллект» входят наряду с другими разделами в состав информатики. Термин «информатика» в 1980-е годы получает широкое распространение, а термин «кибернетика» постепенно исчезает из обращения, сохранившись лишь в названиях тех институтов, которые возникли в эпоху «кибернетического бума» конца 1950-х — начала 1960-х годов[9]. Такой взгляд на искусственный интеллект, кибернетику и информатику разделяется не всеми. Это связано с тем, что на Западе границы данных наук несколько отличаются[10].