Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1_kurs_sbornik.docx
Скачиваний:
2
Добавлен:
01.07.2025
Размер:
1.88 Mб
Скачать

Тема 5. Тела вращения

5.1 Цилиндр

Цилиндром называется тело, которое состоит из двух кругов, не лежащих в одной плоскости и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих кругов. Круги называются основаниями цилиндра, а отрезки, соединяющие соответствующие точки окружностей кругов, - образующими цилиндра (LL1) (рис.51)

Рис.51

ОО1- ось цилиндра.

Все образующие цилиндра параллельны и равны друг другу.

Длина образующей называется высотой цилиндра, а радиус основания — радиусом цилиндра.

Основания цилиндра равны.

Поверхность цилиндра состоит из оснований и боковой поверхности. Боковая поверхность составлена из образующих.

Цилиндр называется прямым, если его образующие перпендикулярны плоскостям оснований (рис.52).

Прямой цилиндр можно представить себе как тело, которое описывает прямоугольник (АВСD) при вращении его около стороны как оси.

Рис. 52

Наклонный цилиндр - цилиндр, основаниями которого являются круги, но образующие цилиндра не перпендикулярны к плоскостям оснований (рис.53).Однако в дальнейшем мы будем рассматривать только такие цилиндры, которые были определены в этом пункте. Их называют иногда прямыми круговыми цилиндрами.

Рис.53

Сечения цилиндра

Если секущая плоскость проходит через ось цилиндра, то сечение представляет собой прямоугольник, две стороны которого — образующие, а две другие — диаметры оснований цилиндра. Такое сечение называется осевым (рис.54)

Рис.54 Рис.55

Если секущая плоскость перпендикулярна к оси цилиндра, то сечение - круг (рис.55)

Площадь боковой  и полной поверхности цилиндра

Представим себе, что боковую поверхность цилиндра разрезали по образующей АВ и цилиндр развернули таким образом, что все образующие оказались расположенными в некоторой плоскости α.(рис. 56) В результате в плоскости α получится прямоугольник АВВ1А1. Этот прямоугольник называется разверткой боковой поверхности цилиндра. Основание АА1 прямоугольника является разверткой окружности основания цилиндра, а высота АВ — образующей цилиндра, поэтому АА1 = 2πr, АВ = h, где г — радиус цилиндра, h — его высота

Рис.56

За площадь боковой поверхности цилиндра принимается площадь ее развертки.

Так как площадь прямоугольника АВВ1А1 равна  , то для вычисления площади Sбок боковой поверхности цилиндра радиуса г и высоты h получается формула:  .

Площадью полной поверхности цилиндра называется сумма площадей боковой поверхности и двух оснований. Так как площадь каждого основания равна πr2, то для вычисления площади  полной поверхности цилиндра получаем формулу: 

Задача 1.  Площадь боковой поверхности цилиндра равна S. Найти: площадь осевого сечения цилиндра (рис.57)

Рис. 57

Решение:  . По рисунку (рис. 57) площадь осевого сечения – это площадь прямоугольника ABCD.  .

Из формулы нахождения площади боковой поверхности:  . Подставим это выражение в формулу осевого сечения:  .

Ответ:  .

Задача 2. Сколько квадратных метров листовой жести пойдет на изготовление трубы длиной 4 м и диаметром 20 см, если на швы необходимо добавить 2,5% площади ее боковой поверхности?.

Решение. Воспользуемся формулой площади полной поверхности цилиндра:  .

Радиус равен половине диаметра – 0,1м, а высота цилиндра равна длине нужной трубы – 4м.

Так на швы нужно добавить 2,5% площади ее боковой поверхности, нужно найти: (S+2,5%S). Подставим вместо S формулу площади боковой поверхности, и вычислим:

Ответ: 2,6 м2.

Задача 3

Концы отрезка АВ = 13 дм лежат на окружностях оснований цилиндра. Радиус цилиндра равен 10 дм, а расстояние между прямой АВ и осью цилиндра равно 8 дм. Найти: высоту H цилиндра (рис. 58)

Рис. 58

Решение. Проведем образующую ВС: Так как ОО1 перпендикулярен ВС, то ОО1

перпендикулярен плоскости АВС. Проведем . Так как  и , т .Таким образом, прямая ОК перпендикулярна к двум пересекающимся прямым АС и BC плоскости АВС. Следовательно,  , значит, расстояние между прямыми АВ и ОО1 равно ОК; ОК = 8 дм.

Рассмотрим ∆АКО – прямоугольный, по теореме Пифагора:   , АС=2AK=12 дм.

Рассмотрим   - прямоугольный, по теореме Пифагора:  .

BC – образующая цилиндра, и она равна высоте цилиндра.

Ответ: H=5 дм.

Задача 4.

Через образующую АА1, цилиндра проведены две секущие плоскости, одна из которых проходит через ось цилиндра, угол между плоскостями равен φ. Найти: отношение площадей сечений цилиндра этими плоскостями (рис.59)

Р ешение. Нарисуем плоскости α – ABB1A1 и β - AA1C1C в цилиндре. Построим угол между плоскостями на рисунке (рис.59).

Рис. 59

. Значит, угол  .

Теперь найдем отношение площадей, которое спрашивается: 

. (Угол C в треугольнике ABC – прямой, так как он опирается на диаметр нижнего основания цилиндра).

Ответ:  .

Задача 5.  

Угол между образующей цилиндра и диагональю осевого сечения равен φ, Площадь основания цилиндра равна 8. Найти площадь боковой поверхности цилиндра

Решение. Обозначим на рисунке АВСD - осевое сечение, диагональ осевого сечения – AC,  угол CAB=φ. (см. рис. 60).

Рис. 60

Для более удобной подстановки в формулу обозначим, что BC=2r, AB=h.

Из треугольника ABC,  .

. Вместо h подставляем найденное выражение, получаем:  .

В полученном выражении πr2=Sосн – по условию. Значит,  .

Ответ:  .

В данной задаче 3, можно воспользоваться только рисунком 61, не рисуя полностью весь цилиндр.

Рис. 61

Задачи

Цель. Учиться изображать цилиндр, его элементы и сечения, выполнять чертежи по условиям задач; решать планиметрические и простейшие стереометрические задачи на нахождение геометрических величин (длин, углов), использовать при решении стереометрических задач планиметрические факты и методы.

  1. Радиус основания цилиндра 2 м, высота 3 м. Найти диагональ осевого сечения.

  2. Осевое сечение цилиндра – квадрат, площадь которого Q. Найти площадь основания.

  3. Высота цилиндра 6 см, радиус основания 5 см. Найти площадь сечения, проведенного параллельно оси цилиндра на расстоянии 4 см от нее.

  4. Высота цилиндра 8 дм, радиус основания 5 дм. Цилиндр пересечен плоскостью параллельно оси так, что в сечении получился квадрат. Найти расстояние этого сечения от оси.

  5. С тороны прямоугольника а и в.Найти боковую поверхность цилиндра, полученного от вращения этого прямоугольника вокруг стороны, равной а.

  1. Диаметр основания цилиндра равен 1, высота равна длине окружности основания. Найти Sбок

  2. Высота равностороннего цилиндра равна h. Найти боковую поверхность.

  3. Радиус основания цилиндра равен R, боковая поверхность равна сумме площадей оснований. Найти высоту.

  4. Площадь осевого сечения цилиндра равна Q. Найти боковую поверхность.

Ответы к задачам

  1. 5 м. 2. . 3.36 см2 4. 3дм. 5.2πав6. π27. πh2 8. R 9. πQ

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]