- •© Михайлов в.Ю. Архитектурно-дизайнерское материаловедение. Учебно-практическое пособие. – м.: мгуту, 2004
- •Содержание
- •1. Природные материалы и изделия
- •1.1. Горные породы, применяемые в строительстве и архитектуре
- •1.1.1. Общие сведения
- •Классификация горных пород
- •Физико-механические свойства горных пород
- •Оценка декоративности природного камня
- •Применение горных пород
- •1.1.2. Обработка природного камня
- •1.2 Лесные строительные материалы
- •1.2.1 Общие сведения
- •Важнейшие свойства древесины
- •Средние показатели физико-механических свойств древесины хвойных и лиственных пород при стандартной 12%-ной влажности
- •1.2.2 Основные древесные породы, применяемые в строительстве
- •1.2.3 Пиломатериалы. Облицовочные изделия
- •1.2.4 Защита древесины от гниения и возгорания
- •Перечень вопросов по теме: «Природные материалы и изделия»
- •2. Материалы и изделия, получаемые спеканием и плавлением
- •2.1. Керамические декоративно-отделочные материалы
- •2.1.1 Общие сведения
- •Основы производства.
- •Основы технологии керамики
- •2.1.2 Стеновые и кровельные керамические материалы
- •2.1.3 Отделочные керамические материалы
- •2.2 Стекло и стеклокристаллические изделия.
- •2.2.1 Общие сведения
- •Получение стекла.
- •2.2.2 Стекло листовое
- •Витринное стекло – листовое стекло толщиной 6…10 мм и размером до 3500×6000 мм. Витринное стекло, как правило, делают полированным.
- •2.2.3 Стекло облицовочное
- •2.2.4 Изделия из стекла
- •2.3 Металлы и металлические изделия
- •2.3.1. Стали и чугуны
- •2.3.2 Цветные металлы и их сплавы
- •2.3.3 Коррозия металлов. Защита от огня.
- •Перечень вопросов по теме: «Материалы и изделия, получаемые спеканием и плавлением»
- •3. Материалы на основе минеральных и органических вяжущих веществ
- •3.1. Конструктивные и декоративно- отделочные изделия на основе минеральных вяжущих веществ
- •3.1.1. Воздушные вяжущие вещества
- •3.1.2 Гидравлические вяжущие вещества
- •3.1.3 Бетоны на неорганических вяжущих веществах
- •Обозначение состава бетона
- •3.1.4. Железобетон и бетонные изделия
- •3.1.5 Строительные растворы
- •Отделочные растворы
- •Искусственные каменные изделия на основе неорганических вяжущих веществ.
- •Физико-механические свойства асбестоцемента
- •3.2. Строительные материалы и изделия на основе органических вяжущих веществ.
- •Физико-механические свойства нефтяных битумов
- •Битумные и дегтевые кровельные и гидроизоляционные материалы
- •Перечень вопросов по теме: «Материалы на основе минеральных и органических вяжущих веществ»
- •4. Изоляционные и красочные материалы. Полимеры.
- •4.1. Полимеры
- •Синтетические покрытия полов
- •4.2 Теплоизоляционные и акустические материалы
- •4.2.1 Теплоизоляционные материалы
- •4.2.2 Акустические материалы
- •Коэффициент звукопоглощения некоторых материалов
- •Значения модулей упругости звукоизоляционных прокладок
- •4.3 Лакокрасочные материалы
- •Перечень вопросов по теме: «Теплоизоляционные и акустические материалы».
- •Ответы на тестовые задания
- •Контрольные тестовые задания
- •Словарь основных понятий
- •Список рекомендуемой литературы
- •Архитектурно-дизайнерское материаловедение
2.2 Стекло и стеклокристаллические изделия.
2.2.1 Общие сведения
Известково-натриевого (силикатное) стекло. Существует много видов стекла, но только известково-натриевое применяется в строительстве в виде оконного и листового стекла. В его состав входят (%): окись кремния – 74, окись алюминия – 1, сода (Na2CO3) – 15, известь – 10. Эти пропорции могут быть слегка изменены. Стекловолокно, например, имеет в своем составе 10% и более окиси алюминия при уменьшенном количестве окиси кремния.
Основной компонент стекла – кремнистый песок, практически являющийся чистым кремнеземом, состоящий из мелких зерен размером 0,15-0,25 мм, сцементированных каолином. При производстве стекла допускается присутствие окиси железа лишь в количестве до 0,25%, так как она окрашивает материал в коричневатый цвет.
Кремнезем и углекислый натрий химически соединяются и образуют стекловидное вещество, называемое силикатом натрия (растворимое стекло), который растворяется в воде и применяется в больших количествах в качестве клея для бумаги. Если во время этой химической реакции добавлять известь, то растворимость вещества в воде снижается. Добавление достаточного количества извести приводит к образованию относительно нерастворимой стеклянной массы, на которую при определенных условиях может воздействовать вода.
Силикатное стекло, подобно многим видам стекла, не является технически твердым веществом и представляет собой переохлажденную жидкость. Твердым считается материал, который при переходе из жидкого состояния кристаллизуется при определенной температуре плавления. Когда расплавленное стекло охлаждается, оно стремится к кристаллизации, но его высокая вязкость не дает возможности атомам сформировать кристаллы. В таком состоянии стекло как бы «застывает», становится аморфным (некристаллическим).
Получение стекла.
Современное стекольное производство включает в себя три этапа: подготовка сырья, стекловарение и формование стеклоизделий.
Перед варкой стекла, сырьевые материалы измельчают, тщательно смешивают в требуемых соотношениях, брикетируют и подают в стекловаренную печь.
Стекловарение. Обычное стекло получают в непрерывно действующих ванных печах с полезным объемом до 60 м3 и суточной производительностью более 300т. Для варки специальных (оптических, цветных и др.) стекол применяют периодически действующие ванные, а также горшковые печи.
Стекловарение – главнейшая операция стекольного производства. На первой стадии этого процесса – силикатообразовании – щелочные компоненты образуют с частью кремнезема силикаты, плавящиеся уже при 1000…12000С. В этом расплаве при дальнейшем нагревании растворяются наиболее тугоплавкие компоненты SiO2 и Al2O3 . Образующаяся при этом масса неоднородная по составу и насыщена газовыми пузырьками.
Удаление пузырьков и полная гомогенизация расплава осуществляется на второй наиболее длительной стадии стекловарения – стеклообразовании – при температуре 1400…16000С. Третья заключительная стадия – студка – охлаждение стекломассы до температуры, при которой она приобретает оптимальную для данного метода формования стеклоизделий вязкость.
Формование. Метод выработки (формования) зависит от вида изделия. Для получения строительного стекла используют вытяжку, прокат, прессование.
При охлаждении стекла вследствие низкой его теплопроводности в нем возникают большие градиенты температур, вызывающие внутренние напряжения. Наиболее опасным моментом с этой точки зрения является переход стекла от вязкопластического состояния к хрупкому, поэтому для снятия внутренних напряжений после формования производят отжиг-охлаждение по специальному режиму: быстрое до начала затвердевания стекломассы, очень медленно в опасном интервале температур (600…3000С) и вновь быстрое до нормальной температуры.
Основной вид строительного стекла – листовое. С начала XX в. большая часть листового стекла стала производиться (а в России производится и до сих пор) методом вертикального вытягивания.
Принцип вертикального вытягивания состоит в транспортировании снизу вверх с помощью валков машины ленты горячей стекломассы шириной до 3 м. Лента выдавливается из стекломассы с помощью погруженного в нее специального приспособления (шамотной лодочки).
В 1959 г. появился новый способ получения высококачественного стекла –флоат-метод (от англ. Float –плавать), при котором горячая стекломасса выливается на поверхность расплавленного металла (обычно олова) и формуется на нем. Производительность таких установок до 3…4 тыс. м2/час. Размер листов: ширина до 3 м; толщина от 2 до 25 мм. Преимущества флоат-метода стабильная толщина листа и высокое качество поверхности, не требующее дальнейшей полировки. В Европе большая часть стекла вырабатывается именно этим методом.
Флоат-метод наиболее производителен и эффективен. Поверхность ленты стекла получается гладкой, не требующей шлифовки и полировки, нижняя-за счет контакта с предельно ровной поверхностью расплавленного металла, а верхняя – поверхностного натяжения.
Свойства силикатного стекла.
Плотность стекла зависит от химического состава и для обычных строительных стекол составляет 2400…2600 кг/м2. Плотность оконного стекла – 2550 кг/м3. Высокой плотностью отличаются стекла, содержащие оксид свинца («богемский хрусталь») – более 3000 кг/ м3. Пористость и водопоглощение стекла практически равны 0%.
Механические свойства. Стекло в строительных конструкциях чаще подвергаются изгибу, растяжению и удару и реже сжатию, поэтому главными показателями, определяющими его механические свойства, следует считать прочность при растяжении и хрупкость.
Теоретическая прочность стекла при растяжении – (10…12)×103 МПа. Практически же эта величина ниже в 200…300 раз и составляет от 30 до 60 МПа. Это объясняется тем, что в стекле имеются ослабленные участки (микронеоднородности, дефекты поверхности, внутренние напряжения). Чем больше размер стеклоизделий, тем вероятнее наличие таких участков. Примером зависимости прочности стекла от размера испытуемого изделия служит стеклянное волокно.
Прочность стекла при сжатии высока – 900…1000 МПа, т.е. почти как у стали и чугуна. В диапазоне температур от -50 до +70ºС прочность стекла практически не изменяется.
Хрупкость – главный недостаток стекла. Основной показатель хрупкости – отношение модуля упругости к прочности при растяжении Е/Rp. У стекла оно составляет 1300…1500 (у стали 400…460, каучука 0,4…0,6). Кроме того, однородность строения (гомогенность) стекла способствует беспрепятственному развитию трещин, что является необходимым условием для проявления хрупкости.
Твердость- стекло представляет собой по химическому составу вещество, близкое к полевым шпатам, такая же твердость, как у этих минералов, и в зависимости от химического состава находится в пределах 5…7 по шкале Мооса.
Оптические свойства стекла характеризуются светопропусканием (прозрачностью), светопреломлением, отражением , рассеиванием и др. Обычные силикатные стекла, кроме специальных (см. ниже), пропускают всю видимую часть спектра (до 88…92%) и практически не пропускает ультрафиолетовые и инфракрасные лучи. Показатель преломления строительного стекла (n =1,50…1,52) определяет силу отраженного света и светопропускание стекла при разных углах падения света. При изменении угла падения света с 0 до 75º светопропускание стекла уменьшается с 90 до 50%.
Теплопроводность различных видов стекла мало зависит от их состава и составляет 0,6…0,8Вт/(м∙К), что почти в 10 раз ниже, чем у аналогичных кристаллических минералов. Например, теплопроводность кристалла кварца – 7,2 Вт/(м∙К).
Звукоизолирующая способность стекла довольно высока. Стекло толщиной 1 см по звукоизоляции приблизительно соответствует кирпичной стене в полкирпича – 12 см.
Химическая стойкость силикатного стекла – одно из самых уникальных его свойств. Стекло хорошо противостоит действию воды, щелочей и кислот (за исключением плавиковой и фосфорной). Объясняется это тем, что при действии воды и водных растворов из наружного слоя стекла вымываются ионы Na+ и Ca++ и образуется химически стойкая пленка, обогащенная SiO2. Эта пленка защищает стекло от дальнейшего разрушения.
