
- •1.Предмет механики жидкости и газа.
- •2.Основные физические свойства жидкостей и газов.
- •3.Жидкость и силы, действующие на нее.
- •4.Гидростатика. Гидростатическое давление и его свойства.
- •5.Основное уравнение гидростатики. Закон Паскаля.
- •6.Виды давления.
- •7. Приборы для измерения давления жидкостей
- •8. Кинематический и динамический коэффициенты вязкости. Физический смысл коэффициентов.
- •9. Сила давления жидкости на плоскую стенку
- •10.Сила давления жидкости на криволинейные стенки.
- •11.Закон Архимеда. Плавание тел.
- •12.Установившееся и неустановившееся движение жидкости. Примеры
- •13.Гидродинамика. Основные понятия и определения.
- •14. Расход. Уравнение объемного расхода.
- •15. Уравнение Бернулли для потока идеальной и реальной жидкостей.
- •16.Энергетическая интерпретация уравнения Бернулли
- •17.Геометрическая интерпретация уравнения Бернулли
- •18.Физический смысл коэффициента Кориолиса, что показывает и какие имеет значения для ламинарных и турбулентных потоков.
- •19. Режимы движения жидкости. Число Рейнольдса, его критическое значение; критические скорости.
- •20. Турбулентные потоки. Осредненные скорости и напряжения. Пульсационные составляющие.
- •21. Двухслойная модель турбулентного потока.
- •21.Двухслойная модель турбулентного потока.
- •22.Классификация потерь напора и формулы, по которым они определяются.
- •23.Распределение скоростей по живому сечению потока при разных режимах движения. Закон распределения скоростей и их среднее значение.
- •24.Шероховатость. Гидравлически гладкие и шероховатые трубы. Толщина вязкого подслоя.
- •34.Истечение из отверстий при переменном напоре.
- •35.Гидравлический удар. Основные понятия и определения.
- •36.Гидравлический удар. Четыре фазы преобразования энергии движущейся жидкости.
- •37. Гидравлический удар при мгновенном закрытии затвора
- •38. Гидравлический удар при резком понижении давления (с разрывом сплошности потока).
- •40.Причины возникновения гидравлического удара и способы защиты.
- •41. Объемные гидроприводы и рабочие жидкости. Общие сведения, основные понятия, принцип действия объемных гидроприводов
- •42.Общие сведения и основные понятия о рабочих жидкостях. Классификация рабочих жидкостей.
5.Основное уравнение гидростатики. Закон Паскаля.
На жидкость, находящуюся в состоянии равновесия, действуют две категории сил: поверхностные и массовые (объемные). К последним относятся: вес, силы инерции, центробежные. Под влиянием этих сил в каждой точке находящейся в равновесии жидкости возникает гидростатическое давление р, величина которого определяется по выражению
где ΔP - сила давления, действующая на площадку ΔS.
Н
а
внешней поверхности жидкости
гидростатическое давление всегда
направлено по внутренней нормали, а в
любой точке внутри жидкости его величина
не зависит от ориентировки площадки,
на которой оно действует. Поверхность,
во всех точках которой гидростатическое
давление одинаково называется поверхностью
равного давления.
К последним относится и свободная
поверхность,
т. е. поверхность раздела между жидкостью
и газообразной средой.
Для любой точки жидкости, находящейся в состоянии равновесия, справедливо равенство
z+p/γ = z0+p0/γ = ... = H,
где p - давление в данной точке А (см. рис.); p0 - давление на свободной поверхности жидкости; p/γ и p0/γ -высота столбов жидкости (с удельным весом γ), соответствующая давлениям в рассматриваемой точке и на свободной поверхности; z и z0 - координаты точки А и свободной поверхности жидкости относительно произвольной горизонтальной плоскости сравнения (x0y); H - гидростатический напор. Из вышеприведенной формулы следует:
p = p0+γ(z0-z) или p = p0+γ·h
где h — глубина погружения рассматриваемой точки. Приведенные выше выражения называется основным уравнением гидростатики. Величина γ·h представляет вес столбика жидкости высотой h с площадью основания, равной единице.
Таким образом, как это следует из выражения, гидростатическое давление p в данной точке равно сумме давления на свободной поверхности жидкости p0 и давления, производимого столбиком жидкости высотой, равной глубине погружения точки. Согласно этому уравнению, давление на поверхности жидкости p0 передается всем точкам объема жидкости и по всем направлениям одинаково (закон Паскаля).
6.Виды давления.
Гидростатическое давление, как и напряжение, в системе СГС измеряется в дин/см2, в системе МКГСС — кгс/м2, в системе СИ — Па. Кроме того, гидростатическое давление измеряется в кгс/см2, высотой столба жидкости (в м вод. ст., мм рт. ст. и т. д.) и, наконец, в атмосферах физических (атм) и технических (ат) (в гидравлике пока еще преимущественно пользуются последней единицей). Разность между абсолютным давлением p и атмосферным давлением pа называется избыточным давлением и обозначается ризб:
ризб = p - pа
или
ризб/γ = (p - pа)/γ = hп
hп в этом случае называется пьезометрической высотой, которая является мерой избыточного давления.
На рисунке показан закрытый резервуар с жидкостью, на поверхности которой давление p0. Подключенный к резервуару пьезометр П (см. рис. ниже) определяет избыточное давление в точке А.
Абсолютное и избыточное давления, выраженные в атмосферах, обозначаются соответственно ата и ати.
Вакуумметрическое давление, или вакуум, — недостаток давления до атмосферного (дефицит давления), т. е. разность между атмосферным или барометрическим и абсолютным давлением:
рвак = pа - p
или
рвак/γ = (pа - p)/γ = hвак
где hвак — вакуумметрическая высота, т. е. показание вакуумметра В, подключенного к резервуару, показанному на рисунке ниже. Вакуум выражается в тех же единицах, что и давление, а также в долях или процентах атмосферы.
Из выражений последних двух выражений следует, что вакуум может изменяться от нуля до атмосферного давления; максимальное значение hвак при нормальном атмосферном давлении (760 мм рт. ст.) равно 10,33 м вод. ст.