Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
UMK_SEU_lektsii.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
3.37 Mб
Скачать

Вопросы для самопроверки

Состав судовой энергетической установки.

Виды энергии, обеспечивающие движение судна.

Технико-экономические показатели судовой энергетической установки.

Лекция 2. ТЕМА: Показатели СЭУ.

Мощностные показатели. Показатели массы. Габаритные показатели СЭУ. Показатели маневренности. Показатели надежности.

Для оценки тех или иных качеств СЭУ используют систему технико-экономических показателей. При выборе теплового двигателя важнейшим критерием его пригодности является мощность.

Мощностные показатели. Известно, что мощность представляет собой работу, совершаемую двигателями за секунду. В Международ­ной системе единиц СИ за единицу мощности принят 1 Ватт (Вт): 1 Вт = 1 Дж/с = 1 Н∙м/с.

Вращающий момент двигателя Мвр, Н • м, при угловой скорости , 1/с, развивает мощность

(2.1)

где п – частота вращения рабочего вала двигателя, с

Для измерения мощности СЭУ единица мощности 1 Ватт малопри­годна. Обычно пользуются величиной, в 103 раз большей – 1 киловатт (кВт).

За механическую мощность теплового двигателя принимают мощность на выходном фланце рабочего вала; ее называют эффектив­ной мощностью, при этом предполагается, что номинальная эффектив­ная мощность развивается тепловым двигателем при номинальном вращающем моменте Мвр и номинальной частоте вращения п.

Агрегатная мощность любого типа современных двигателей превы­шает реальную потребную мощность не только промысловых судов, но и любого транспортного судна, т. Е. практически любое судно может быть оборудовано только одним главным двигателем любого типа.

Показатели тепловой экономичности главных двигателей. К таким показателям относятся удельный расход топлива gе и эффективный КПД .

Удельный расход топлива представляет собой отношение часового расхода топлива G к мощности двигателя Nе, развиваемый на фланце рабочего вала

gе= G/ Nе. (2.2)

Эффективный КПД двигателя и удельный расход топлива связаны cоотношением

=3600/( gе Q ). (2.3)

В современных ДВС удельный расход топлива составляет 0,16…0,195 кг/кВт, эффективный КПД – 0,44 … 0,52.

Экономичность судовых паротурбинных установок (ПТУ) значи­тельно ниже, чем дизельных ( = 0,33…0,35). Газотурбинные установ­ки (ГТУ) по экономичности занимают промежуточное место между дизельными и паротурбинными энергетическими установками.

Экономичность главной СЭУ в целом оказывается несколько ниже экономичности главных двигателей из-за потерь в главной передаче и подшипниках судового валопровода, а также из-за расхода энергии на привод в действие вспомогательных механизмов систем главных двигателей. КПД главной СЭУ будет равен

, (2.4)

а удельный расход топлива, отнесенный к ступице гребного винта,

(2.5)

где КПД главной передачи и судового валопровода, соответственно;

коэффициент, учитывающий дополнительные затраты энергии на привод вспомогательных механизмов

Общий термический эффективный КПД гребной установки с учетом КПД гребного винта и влияния корпуса судна на его работу будет иметь вид:

(2.6)

где - пропульсивный КПД гребного винта;

(2.7)

где КПД гребного винта, t- коэффициент засасывания; w- коэффициент попутного потока

Значение КПД элементов МДК, входящих в уравнения (1.4) и (1.6), зависят от его мощности. Ориентировочно их значения приведены ниже.

Элементы МДК

Редуктор одноступенчатый………………………..0,98 …0,99

Редуктор двухступенчатый ……………………….0,96…0,98

Электрическая передача переменного тока………0,90…0,94

Электро- и гидродинамическая муфты …………..0,96…0,98

КПД судового валопровода зависит от числа опорных подшипников: для дизельный установок ; для турбинных установок (j - число опорных подшипников).

Коэффициент, учитывающий дополнительные затраты энергии на привод в действие вспомогательных механизмов лежит в пределах 0,93…0,97 и зависит от мощности главных ДВС. Для СЭУ современных судов КПД составляет 0,32…0,40, в зависимости от типа главной передачи и мощности. Применение высокоэкономичных ДВС позволит повысить КПД энергетической установки до 0,38…0,46.

Экономичность вспомогательных дизель-генераторов на 10…20% ниже, чем главных ДВС. С учетом КПД генераторов ( 0,90…0,94) удельный расход топлива на 1 кВтч электрической энергии 0,215…0,225 кг\(кВтч), у лучших же образцов 0,200 кг/(кВт∙ч).

Агрегатированные вспомогательные паровые котлы (ВПК) отечественного производства с рабочим давлением пара 0,5…0,7 МПа имеют КПД 0,80…0,82.

Общепринятого показателя теплотехнического совершенства СЭУ в целом пока не существует. В свое время предпринимались попытки представить такой показатель в виде

(2.8)

где - мощность рабочих агрегатов судовой электростанции (СЭС), кВт; - паропроизводительность ВПК, кг\ч; - энтальпия свежего пара в котле и питательной воды соответственно; кДж/кг; - часовой расход топлива главными ДВС, агрегатами СЭС и ВКУ соответственно, кг/ч; - теплота сгорания топлива, используемого в главных двигателях, агркгатах СЭС и ВКУ соответственно, кДж/кг

В числителе выражения (2.8) представлена полезная работа, выполненная всеми элементами СЭУ в килоджоулях, а в знаменателе – суммарная теплота сгорания топлива, израсходованного главными двигателями, агрегатами СЭС и ВКУ. Таким образом, этот показатель отражает КПД СЭУ, однако он не может объективно отражать теплотехническое совершенство СЭУ.

Показатели массы. Масса СЭУ характеризуется тремя показателями: абсолютной массой, относительной массой и удельной массой отдельных элементов СЭУ – главных двигателей, агрегатов СЭС и ВКУ.

В массу СЭУ входят:

  • МДК с механизмами и оборудованием систем, которые его обслуживают;

  • агрегаты СЭС с главными распределительными щитами;

  • ВПК и УПК с механизмами и оборудованием обслуживающих их систем;

  • центральные и местные посты управления СЭУ и ее отдельных элементов;

  • трубопроводы с арматурой, изоляцией и окраской для канализации рабочих тел, используемых в СЭУ.

Массы двигателей, котлов, механизмов и оборудования принима­ются в состоянии готовности к действию, но без запасов рабочих тел.

Масса СЭУ зависит от мощности ее основных элементов и степени форсировки рабочих процессов. Поэтому абсолютная масса СЭУ мало­показательна и чаще оперируют относительной массой, представляю­щей собой долю массы СЭУ в полном водоизмещении судна

, (2.9)

где D - полное водоизмещение судна, т; - абсолютная, т, и относительная массы энергетической установки

Относительная масса СЭУ сильно зависит от водоизмещения судна. Так, на малых судах , на средних рыболовных траулерах = 0,16 ... 0,18, на крупнотоннажных траулерах = 0,08... 0,10 и т. д. Удельная масса отдельных элементов СЭУ также не отличается стабильностью.

Например, масса главных ДВС, приходящаяся на 1 кВт их мощности, зависит от степени форсировки по среднеэффективному давлению и частоте вращения, тактности, а также и от конструктивных особенностей двигателей (тронковый, крейцкопфный, с рядным или V-образным расположением цилиндров и др.). Сказанное в полной мере относится и к дизель-генераторам. Представление об удельных массах главных ДВС и дизель-генераторов можно получить при рас­смотрении данных табл. 2.1.

Значительно большей стабильностью отличаются удельные массы ВПК. Например, удельные массы агрегатированых ВПК, выпускаемых отечественной промышленностью, составляют 1,7...4,0 кг пара в час на кг массы. Удельная масса главных паровых котлов меньше 1 кг • ч/кг.

Таблица 2.1. Удельные массы двигателей внутреннего сгорания

Тип двигателя

Частота

вращения, мин

Удельная масса двигателей

рядного исполнения,

кг/кВт

V-образного исполнения,

кг/кВт

Высокооборотные

Среднеоборотные

То же, мощностью менее 500 кВт

Малооборотные

1000; 750;

500;

500;

200; 90;

9…11; 12…15;

14…18;

25…30;

20…30; 40…50;

7…8; 10…12;

12…17;

18…25

-

Габаритные показатели СЭУ. О размерах помещений, необходимых для размещения СЭУ, судят по показателям мощностей насыщенно­сти длины , кВт/м, площади , кВт/м2 и объема машинно-котельно­го отделения (МКО) , кВт/м3,

(2.10)

где - длина МКО между поперечными переборками, м; - площадь МКО, м ; - объем МКО, м3

Под площадью МКО понимают фактическую площадь на уровне настила трюма и площадь промежуточных палуб, а также платформ и цистерн, на которых размещены механизмы и оборудование и с кото­рых можно выполнять работы по их обслуживанию. В объем МКО включают геометрический объем отсека без учета объема размещен­ных в нем танков запаса топлива, смазки и пресной воды.

Иногда под площадью МКО подразумевают лишь площадь на уровне настила, хотя на крупных судах часть механизмов и оборудова­ния размещается и на платформах и промежуточных палубах, а в объем МКО включают также объем танков двойного дна, бортовых цистерн и машинных шахт. При такой трактовке площади и объема МКО заметно возрастает неопределенность показателей мощностной насыщенности площади и объема МКО.

Таблица 2.2. Характеристики мощностной насыщенности энергетических судов

Мощность главных двигателей, кВт

Мощностная насыщенность МКО

длины, кВт/м

площади, кВт/ м

объема, кВт/ м3

До 1000

2000…3000

3000…4000

Более 6000

80…100

140…180

180…200

350…4000

12…15

16…20

22…25

22…26

3,9…4,2

4,7…5,0

4,9…5,6

4,3…5,0

В выражениях (2.10) мощность агрегатов СЭС не учитывается. Между тем на промысловых судах она составляет 30... 60 %, а то и 100 % мощности главного ДВС. Это снижает показатели мощностного насыще­ния МКО промысловых судов, расширяет возможный диапазон их значений и делает их несопоставимыми с соответствующими показате­лями не только судов морского флота, но и других судов ФРП. Дейст­вительно, показатели мощностной насыщенности СЭУ с валогенераторами будут при прочих равных условиях значительно выше, чем у СЭУ с автономными агрегатами СЭС, поскольку мощность главных ДВС в СЭУ с отбором мощности будет значительно выше. Поэтому при расчете показателей мощностной насыщенности МКО необходимо учитывать и мощность агрегатов СЭС. В табл. 2.2 приведены значения мощностной насыщенности МКО некоторых типов промысловых судов (с учетом мощности агрегатов СЭС).

Мощностная насыщенность МКО, размещение механизмов и оборудования не должно препятствовать выполнению регламентных и ремонтных работ и соответствовать требованиям охра­ны труда машинных команд.

Показатели маневренности. Маневренность СЭУ представляет собой совокупность свойств, отражающих способность СЭУ изменять свое состояние или режим работы за единицу времени под воздействи­ем внешних импульсов, а также способность работать при предельных значениях некоторых параметров рабочего процесса. В последнем случае численной мерой маневренности являются предельные значе­ния параметров рабочего процесса и допустимая продолжительность работы СЭУ с этими параметрами.

Наиболее важные показатели маневренности главной энергетиче­ской установки следующие.

Время, необходимое на подготовку главной энергетической установки к пуску после стоянки. Оно зависит от типа и мощности главного двигателя. Для дизельных энергетических установок время подготовки к пуску в действие составляют 1... 2 ч, для паротурбинных 3... 4 ч.

Время, необходимое для выхода главной энергетической установ­ки на режим номинальной нагрузки. Для дизельных установок оно составляет 0,25... 2 ч в зависимости от мощности; паротурбин­ных до 2 ч.

Продолжительность реверса. Время реверса отсчитывают с момента подачи команды «Назад» до начала вращения гребного вала в противо­положном направлении. Время реверса зависит от начальной скорости судна. Для энергетических установок с ДВС при v=0, оно равно 5…10с. На полной скорости процесс реверсирования может носить затяжной характер.

Мощность главной энергетической установки на заднем ходу судна. У дизельных установок мощность на заднем ходу составляет примерно 80% от . Мощность турбин заднего хода согласно требованию Регистра должна составлять не менее 40 % мощности главных турбин, при этом , а . Время перехода энергетической установки с одного режима на другой.

Способность к перегрузке. Главные ДВС допускают 10%-ю пере­грузку по мощности в течение часа.

Минимальная частого вращения рабочего вала главного двигателя. По механическим, термо- и газодинамическим условиям рабочего процесса ДВС в подавляющем большинстве работают устойчиво при частоте вращения, составляющей около 30 % номинальной. У ГТУ огра­ничиваются частотой вращения, исключающей помпаж в компрессоре.

Способность МДК к саморегулированию по вращающему моменту при изменении внешней нагрузки, т.е. изменять величину вращающе­го момента в сторону, соответствующую изменению внешнего нагру­зочного момента. Турбины и дизельные МДК с электропередачами постоянного тока обладают некоторой способностью к саморегулирова­нию по моменту.

Показатели надежности. Под надежностью СЭУ понимают ее спо­собность выполнять заданные функции, сохраняя сбои эксплуатацион­ные показатели в установленных пределах. Надежность СЭУ характе­ризуется безотказностью, долговечностью и ремонтопригодностью.

Безотказность - свойство СЭУ непрерывно сохранять работоспо­собность на протяжении некоторого времени без вынужденных пере­рывов. Количественно безотказность определяется вероятностью безотказной работы, средней наработкой на отказ, средним временем восстановления работоспособности и коэффициентом готовности. Перечисленные показатели носят вероятностный характер.

Долговечность - свойство СЭУ сохранять работоспособность до наступления предельного состояния при установленной системе технического обслуживания и ремонта.

Состояние СЭУ, при котором дальнейшая ее эксплуатация становит­ся технически невозможной или нецелесообразной, называют предель­ным. Признаки предельного состояния СЭУ оговариваются в норматив­но-технической документации. К числу таких признаков можно отнести:

- ухудшение параметров рабочего процесса и уменьшение уровня безотказности;

- чрезмерные затраты на восстановление работоспособности, при которых дальнейшая эксплуатация экономически нецелесообразна;

  • моральный износ, при наличии возможности замены элементов СЭУ более эффективными.

Мерой долговечности служит ресурс - наработка СЭУ до предель­ного состояния. Это так называемый полный ресурс. Кроме того, различают и ресурсы других видов:

  • гарантированный, или наработка, до окончания которой постав­щик гарантирует безотказную работу элемента СЭУ и несет за это ответственность;

  • до капитального ремонта - наработка восстанавливаемого элемента СЭУ до капитального ремонта;

  • назначенный - наработка, по достижении которой эксплуатация элемента СЭУ должна быть прекращена независимо от его состояния в целях обеспечения высокого уровня безопасности эксплуатации СЭУ,

Ремонтопригодность - свойство СЭУ, заключающееся в ее приспо­собленности к предупреждению, обнаружению и устранению отказов и неисправностей путем технического обслуживания и ремонта.

Живучесть СЭУ — свойство, проявляющееся только в аварийных ситуациях (затопление отсеков, отказ части энергооборудования, пожар и т.п.) и заключающееся в приспособленности СЭУ сохранять при этом полностью или частично свою работоспособность.

Энергетическая установка, отличающаяся высокой надежностью в нормаль­ных условиях эксплуатации, может не обладать столь же высокой живучестью. Например, двухмашинная СЭУ (с двумя главными двигателями), имеющая низкие показатели надежности, оказывается более „живучей" в сравнении с энергетической установкой, оборудованной высоконадежным, но только одним главным ДВС. Ведь выход из строя единственного главного ДВС, как бы малове­роятен он ни был, лишает судно хода, в то время, как в двухмашинной СЭУ (с двумя двигателями) сохраняется возможность судна двигаться, хотя и с неполной скоростью.

Живучесть СЭУ можно существенно повысить за счет резервирования основного оборудования, а также амортизацией механического оборудования, рациональным размещением оборудования в соответствии с нормами проектиро­вания, уменьшающим вероятность возникновения аварийных ситуаций. Кроме того, живучесть обеспечивается на судах средствами противопожарной защиты, системами для выравнивания крена и дифферента при затоплении отсеков и средствами для выполнения аварийных работ.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]