
- •Основы электрохимической технологии
- •1. Электролиз с твердым катодом и фильтрующей диафрагмой
- •2. Физико-химическая сущность мембранного способа производства хлора и щелочи. Устройства мембран, их свойства.
- •4 Теоретические основы и закономерности электроосаждения металлических покрытий. Влияние различных факторов на структуру и свойства гальванических осадков.
- •6. Электрохимическое оксидирование металлов. Назначение и сущность процесса.
- •9. Процессы протекающие в электролизере и гидролизере при получение пероксида водорода, влияние технологических факторов на выход пероксида водорода.
- •10. Вторичные источники тока. Щелочные аккумуляторы.
- •11. Классификация методов производства хлора и щелочи, их сравнительная характеристика.
- •13. Типы применяемых анодов. Растворимые и нерастворимые аноды.
- •16 Основные свойства медных порошков область применения, способы получения.
- •17 Химические покрытия. Металлизация диэлектриков
- •20 Процессы на электродах и в электролите при электролитическом рафинировании меди.
- •21 Классификация электрохимических производств. Преимущества и недостатки.
- •Коррозия и защита металлов
- •1 Основные факторы электрохимической коррозии
- •2 Химический и электрохимический механизм коррозии
- •4 Термодинамическая возможность электрохимической коррозии. Стандартные и стационарные электродные потенциалы
- •5 Коррозия с водородной деполяризацией
- •6 Протекторная защита
- •8 Ингибиторная защита
- •10 Коррозия с кислородной деполяризацией
- •14 Методы и цели исследования и контроля коррозионных процессов. Коррозионный мониторинг.
- •16 Теоретические аспекты коррозионных процессов
- •17 Подземная и электрокоррозия
- •Процессы и аппараты
- •1 Гидростатика и ее основные законы
- •2 Гидродинамика режимы течения жидкости
- •3 Гидравлическое сопротивление, методы его расчета
- •4 Перемещение жидкости и газов машины для перемещения жидкости и газов
- •5 Неоднородные системы и методы их разделения
- •6 Аппараты для гравитационного осождения неоднородных систем
- •8 Фильтрование, фильтрующая аппаратура
- •10 Псевдоожижение, применение
- •12 Способы переноса тепла. Нагревающие и охлаждающие агенты.
- •15 Выпаривание
- •16 Многокорпусное выпаривание
- •19 Абсорбция
- •Поверхностные и пленочные абсорберы
- •20 Адсорбция
- •21 Простая перегонка, физ сущ
- •22 Ректификация
- •23 Экстракция
6 Протекторная защита
ПРОТЕКТОРНАЯ ЗАЩИТА МЕ способ антикоррозионной защиты, при котором защищаемой поверхности необходимо обеспечить контакт с более активным металлом (ссылка). По отношению к железу, более активными металлами являются кадмий, хром, цинк, магний и другие металлы.
Из механизма коррозии металла, следует, что более активный металл начинает испускать электроны и присоединять к образовавшимся ионам гидроксильной группы из раствора электролита, а другой, менее активный, будет принимать электроны, присоединяя их к своим ионам. В результате, более активный металл — анод — будет окисляться, а менее активный металл — катод восстанавливаться. Таким образом, анод будет защищать от коррозиИ
Протекторная защита нашла широкое применение для защиты таких объектов как: подземные трубопроводы, резервуары, морские и речные суда и др. Все эти объекты находятся в постоянном контакте с электролитом, будь то грунтовые воды, химические растворы, морская или речная вода.
Для реализации протекторной защиты необходимо обеспечить соприкосновение самого протектора с чистой поверхностью защищаемого металла Если на эту конструкцию будет воздействовать внешняя среда, то электроны протектора будут переходить в защищаемый металл и на катоде начнется выделение водорода. Ионы протектора, соединяясь с кислородом (гидроксильными группами OH), вызывают окислительную реакцию, которая приводит к появлению гидроокиси того металла, из которого сделан протектор. Таким образом, обеспечивается катодная защита металла до тех пор, пока протектор полностью не разрушится вследствие коррозии. После полного разрушения начнет корродировать и сам металл.
Среди лакокрасочных материалов выделят класс протекторных грунтовок (цинконаполненных или цинкосодержащих). Применение данного вида материалов получило название «холодное цинкование». Механизм их действия мы опишем в следующих постах.
8 Ингибиторная защита
Ингибирование – это один из видов воздействия на окружающую среду, состоящий в том, что в ее состав вводятся специальные химические 6Лебедев Ю.А. Лекция 16 соединения, которые, присутствуя в коррозионной системе в достаточной концентрации, адсорбируются на поверхности металла и уменьшают скорость коррозии без значительного изменения концентрации любого коррозионного реагента. Этот вид защиты может эффективно применяться в случаях, когда изделие работает в замкнутой среде (например, в замкнутых контурах теплообмена) или при возможности создания искусственных сред (например, при нанесении смазки). Химически ингибиторы представлены широким набором веществ различных классов – неорганические соли, содержащие в катионы Ca2+ , Zn2+ , Ni2+ , As3+ , Bi3+ , Sb3+ или анионы CrO2- 4, Cr20 2- 7, NO- 2, SiO2- 3, PO3- 4, а также многие классы органических соединений. Чаще всего в качестве ингибиторов используют алифатические и ароматические соединения, имеющие в своем составе атомы азота, серы и кислорода (амины, меркаптаны, органические кислоты) Защита металлов от коррозии ингибиторами (замедлителями) основана на свойстве некоторых химических соединений при введении их в незначительных концентрациях в коррозионную среду уменьшать скорость коррозионного процесса или полностью его подавлять. Ингибиторы применяются для защиты металлов при промывке, травлении, вводятся в полимерные покрытия, у которых при этом повышаются защитные свойства, в воски, смазки, в упаковочную бумагу, в замкнутое пространство витрин и шкафов для хранения экспонатов из металла и пр. Механизм защиты ингибиторами в общем случае заключается в том, что они, попадая на поверхность металла, адсорбируются ею и тормозят скорость ионизации металла или кислорода или одновременно того и другого. Различают ингибиторы для черных металлов, для цветных и ингибиторы универсального действия, т.е. такие, которые способны защищать одновременно как черные, так и цветные металлы. За последние годы достигнуты значительные успехи в научной разработке проблемы защиты металлов от коррозии ингибиторами и налажен промышленный их выпуск. При реставрации изделий из металлов с успехом используются ингибиторы, разработанные для различных отраслей техники.
При подборе ингибиторов рекомендуется пользоваться справочной литературой и помнить, что вещества, замедляющие коррозию для одних металлов, могут оказаться стимуляторами коррозии для других.