
- •Вступ в 1. Загальні відомості
- •Контрольні запитання
- •1.1. Особливості конструкції трансформаторів малої потужності
- •1.5. Електромагнітні перетворювачі частоти
- •1.11. Імпульсні трансформатори
- •Контрольні запитання
- •Розділ 2. Трансформаторні перетворювачі частоти й числа фаз та імпульсні
- •2.1 Трансформатори для перетворення числа фаз
- •2.2. Електромагнітні перетворювачі частоти
- •2.3. Імпульсні трансформатори
- •Контрольні запитання
- •Розділ 4. Трансформатори з регулюванням вторинної напруги
- •4 .1 Трансформатори з перемиканням відгалужень обмоток без збудження
- •4.4. Трансформатори, які регулюються підмагнічуванням шунтів
- •4.5. Трансформатори послідовного вмикання
- •4.6. Трансформатори з рухомою вторинною обмоткою
- •4.7. Індукційні та фазорегулятори [1]
- •4.7.1. Принцип дії індукційного регулятора
- •4.7.2. Струми й потужність індукційного регулятора
- •4.7.3. Здвоєний індукційний регулятор
- •Контрольні запитання
- •5.1. Трансформатори напруги
- •5.2. Трансформатори струму
- •5.3. Випробувальні трансформатори
- •5.4 Трансформатори пожежо- та вибухобезпечні
- •5.5. Зварювальні трансформатори
- •Контрольні запитання
- •Розділ 6. Тягові трансформатори
- •6.1. Умови роботи тягових трансформаторів
- •6.2 Трансформатори для різних систем регулювання напруги
- •6.3. Конструктивні особливості тягових трансформаторів
- •6.4. Системи охолодження тягових трансформаторів
- •Контрольні запитання
- •Розділ 7. Надпровідність та перспективи її застосування в трансформаторобудуванні
- •7.1 Загальні відомості
- •7.2 Надпровідники
- •7.3. Композитні провідники
- •7.4 Надпровідні обмотки
- •Контрольні запитання
- •8.1 Загальні відомості
- •8.2 Найбільш характерні області застосування реакторів
- •8.3. Надпровідні індуктивні накопичувачі енергії
- •Контрольні запитання
- •Література до вступу та частини 1
- •Зміст частини першої стор.
- •Контрольні запитання...............................................................
- •Контрольні запитання...............................................................
- •Контрольні запитання...............................................................
- •Контрольні запитання.................................................................
- •Контрольні запитання...................................................................
- •Контрольні запитання................................................................
- •Контрольні запитання..................................................................
- •9.1. Створення обертового магнітного поля в електричних машинах змінного струму
- •9.2. Вмикання трифазних асинхронних двигунів для живлення від однофазної мережі
- •9.3 Розщіплювачі фаз
- •9.3.1. Синхронні розщіплювачі фаз
- •Асинхронні розщіплювачі фаз
- •10.1 Застосування й основні функції електричних мікродвигунів
- •10.2 Класифікація виконавчих мікроелектродвигунів
- •10.3 Вимоги до виконавчих мікроелектродвигунів
- •10.3.2 Самохід виконавчих двигунів
- •10.3.3 Швидкодія
- •10.3.4. Відсутність радіозавад
- •10.3.5. Безшумність роботи
- •11.1. Принцип дії двофазного виконавчого асинхронного мікродвигуна
- •11.3. Гіроскопічні, моментні й тороїдні асинхронні двигуни
- •13.3.1. Гіроскопічні асинхронні двигуни
- •11. 3. 2. Моментні асинхронні двигуни
- •11. 3. 3. Тороїдні двигуни [39]
- •11. 4. 1 Амплітудне керування
- •11.4.2. Фазове керування
- •11.4.3. Просторове керування
- •11.4.4. Амплітудно-фазове керування
- •11.4.5. Комбіноване керування
- •12.1. Загальна характеристика й класифікація синхронних мікродвигунів
- •12.2. Синхронні виконавчі двигуни з постійними магнітами
- •12.3. Реактивні двигуни [40]
- •12.3.1. Переваги й недоліки синхронних реактивних двигунів
- •12.3.2. Обертаючий момент і електромагнітна потужність синхронних реактивних двигунів (срд)
- •12.3.3. Конструкція синхронних реактивних двигунів
- •12.3.4. Пуск срд
- •12.3.5. Коливання ротора срд
- •12.3.6. Однофазні й двофазні срд
- •12.3.7. Редукторний двигун
- •12.4. Гістерезисні двигуни
- •12.4.1. Коливання ротора гістерезисного двигуна
- •12.4.2. Однофазний синхронний гістерезисний двигун з екранованими полюсами
- •12.5. Крокові двигуни
- •Розділ 13. Виконавчі двигуни постійного струму
- •13.2. Способи керування виконавчими двигунами постійного струму
- •13.2.1. Якірне керування
- •13.2.2. Полюсне керування
- •13.2.3. Імпульсне керування виконавчими двигунами постійного струму [25]
- •13.2.4. Безколекторний мікропривод постійного струму
- •13.3. Пускові властивості й реакція якоря виконавчих двигунів постійного струму
- •13.4. Порівняння різних способів керування виконавчими двигунами постійного струму
- •13.5. Універсальний колекторний двигун
- •14.1. Конструкція, принцип дії, переваги й недоліки синхронних двигунів з ротором, який котиться
- •14.2. Параметри й застосування синхронних дкр
- •14.3. Різні виконання й класифікація електричних машин з ротором, який котиться (емкр)
- •14.4. Хвильові електродвигуни
- •14.5. Пускові й динамічні властивості двигунів з ротором, який котиться
- •15.1. Загальні відомості про тахогенератори
- •15.2. Конструктивні особливості й застосування тахогенераторів
- •15.3. Вихідна характеристика тахогенераторів постійного струму
- •15.4. Погрішності тахогенераторів постійного струму та способи їх зменшення
- •15.5. Переваги й недоліки тахогенераторів постійного струму. Робота в режимі акселерометра
- •15.6. Принцип дії асинхронного тахогенератора. Еквівалентна схема
- •15.7. Вихідна характеристика асинхронного тахогенератора
- •15.8. Погрішності асинхронного тахогенератора та способи їх зменшення
- •15.9. Застосування асинхронних тахогенераторів. Переваги й недоліки
- •15.10. Синхронний тахогенератор
- •16.1. Загальна характеристика, застосування та класифікація машин систем синхронної передачі
- •16.2. Трифазні синхронні передачі
- •16.3 Контактні однофазні сельсини
- •16.3.1 Конструкція контактних однофазних сельсинів
- •16.3.2. Робота контактних сельсинів у індикаторному режимі
- •16.3.3 Робота контактних сельсинів у трансформаторному режимі
- •16.4 Одновісні сельсини
- •16.5. Безконтактні сельсини
- •16.6. Магнесини
- •16.7. Диференціальний сельсин
- •16.8. Спеціальні режими роботи сельсинів
- •16.9. Погрішності в сельсинах та способи їх зменшення
- •16.10. Сельсин-двигун
- •17.1. Загальна характеристика, застосування й основні режими роботи поворотних трансформаторів
- •17.2. Принцип роботи поворотного трансформатора
- •17.3. Симетрований синусно-косинусний поворотний трансформатор
- •17.4. Лінійний поворотний трансформатор
- •17.5. Поворотний трансформатор–побудувач та перетворювач координат
- •17.6. Масштабний поворотний трансформатор
- •17.7. Робота поворотного трансформатора в режимі фазообертача
- •17.8. Трансформаторна синхронна передача на поворотних трансформаторах
- •17.9. Погрішності поворотних трансформаторів та способи їх зменшення
- •Зміст частини другої стор.
- •Розділ 13. Виконавчі двигуни постійного струму…………………..
17.5. Поворотний трансформатор–побудувач та перетворювач координат
Рис. 17.6. Схема для вирішення прямокутного трикутника
За допомогою поворотних трансформаторів здійснюється перетворення координат на площині (від декартової системи до полярної; від однієї декартової системи до іншої, яка повернута на певний кут α, та низку інших перетворень), визначення гіпотенузи прямокутного трикутника та одного з гострих кутів за двома катетами.
Рис. 17.7. Заданий прямокутний трикутник
Схема для вирішення прямокутного трикутника наведена на рис.17.6. На схемі наведено механічне з’єднання роторів поворотного трансформатора та виконавчого двигуна з амплітудно-фазовим керуванням через редуктор.
Будемо вважати, що задано прямокутний трикутник, який має сторони з довжинами а, b, с (рис.17.7).
Відомі катети b і с. потрібно визначити гіпотенузу а й кут α.
Довжини катетів задаємо за допомогою подільника R (рис.17.6) у вигляді напруг:
,
(17.66)
.
(17.67)
МРС
головної та компенсаційної обмоток
створюють пульсуючий магнітні потоки
та
,
осі яких нерухомі у просторі. Якщо машина
не насичена, то модулі
та
пропорційні до напруг
та
.
Додаючись, потоки
та
створюють результуючий магнітний потік
,
вектор якого створює за осями головної
й компенсаційної обмоток такі ж кути,
як і гіпотенуза а
з катетами b
та с.
Подовжня та поперечна складові
результуючого потоку наближено
дорівнюють:
;
(17.68)
.
(17.69)
Результуючий потік дорівнює:
.
(17.70)
Цей потік наводить в роторних обмотках ЕРС:
;
(17.71)
.
(17.72)
Припустимо,
що в початковий момент часу (до вмикання
та
)
α=0,
тобто осі обмоток Р3-Р4
та С1-С2
співпадають (рис.17.6). При подачі напруг
та
потік
наведе в обмотках ротора ЕРС у відповідності
з (17.71), (17.72). Виконавчий двигун почне
обертатись, і його обертання буде
продовжуватись до того моменту часу,
доки на затискачах обмотки керування
«К» буде напруга, тобто до тих пір , доки
обмотка Р3-Р4
не займе положення, при якому її вісь
буде перпендикулярною до осі магнітного
потоку
.
Тому ротор повернеться на кут α. При
цьому:
;
.
Нехтуючи спадом напруги в обмотці, можливо записати:
.
(17.73)
Таким
чином, гіпотенуза а
пропорційна напрузі
при нерухомому роторі, а кут α
дорівнює одному з гострих кутів
прямокутного трикутника.
Рис. 17.8. Схема вмикання перетворювача координат
За допомогою поворотного трансформатора можливо перетворювати одну систему координат в іншу, повернуту на деякий кут α. Для цього суміщують вихідну систему координат з осями обмоток статора, а перетворену – з осями обмоток ротора (рис.17.8).
При вмиканні обмоток С1-С2 та К1-К2 на синфазні напруги та створюються магнітні потоки за співвідношеннями (17.68), (17.69). У вторинних обмотках кожен з цих потоків наводить відповідну ЕРС:
;
(17.74)
.
(17.75)
Складові ЕРС у (17.74), (17.75) дорівнюють:
;
(17.76)
.
(17.77)
;
(17.78)
.
(17.79)
Підставляючи
з (17.76)÷(17.79) у (17.74), (17.75) з урахуванням
(17.68), (17.69) одержимо, вважаючи
;
:
;
(17.80)
;
(17.81)
Формули (17.80), (17.81) відповідні співвідношенням між координатами повернутих осей у декартовій системі. Якщо
,
(17.82)
.
(17.83)
то
,
(17.84)
.
(17.85)
Оскільки за схемою рис.17.6 визначається довжина гіпотенузи прямокутного трикутника й кут α за двома катетами, це відповідно переходу від декартової системи координат (катети) до полярної (гіпотенуза й кут).
В цьому режимі, як і в попередніх, здійснюється симетрування:
а) первинне при z1=zк; zs≠zc;
б) вторинне при zs=zc; z1≠zк;
в) первинне та вторинне при z1=zк; zs=zc;
При первинному симетруванні перетворювача координат та , які співпадають за фазою, повинні бути задані в одних масштабах. При вторинному симетруванні – навпаки. Найзручнішим видом симетрування є сукупне первинне та вторинне.