
- •Вступ в 1. Загальні відомості
- •Контрольні запитання
- •1.1. Особливості конструкції трансформаторів малої потужності
- •1.5. Електромагнітні перетворювачі частоти
- •1.11. Імпульсні трансформатори
- •Контрольні запитання
- •Розділ 2. Трансформаторні перетворювачі частоти й числа фаз та імпульсні
- •2.1 Трансформатори для перетворення числа фаз
- •2.2. Електромагнітні перетворювачі частоти
- •2.3. Імпульсні трансформатори
- •Контрольні запитання
- •Розділ 4. Трансформатори з регулюванням вторинної напруги
- •4 .1 Трансформатори з перемиканням відгалужень обмоток без збудження
- •4.4. Трансформатори, які регулюються підмагнічуванням шунтів
- •4.5. Трансформатори послідовного вмикання
- •4.6. Трансформатори з рухомою вторинною обмоткою
- •4.7. Індукційні та фазорегулятори [1]
- •4.7.1. Принцип дії індукційного регулятора
- •4.7.2. Струми й потужність індукційного регулятора
- •4.7.3. Здвоєний індукційний регулятор
- •Контрольні запитання
- •5.1. Трансформатори напруги
- •5.2. Трансформатори струму
- •5.3. Випробувальні трансформатори
- •5.4 Трансформатори пожежо- та вибухобезпечні
- •5.5. Зварювальні трансформатори
- •Контрольні запитання
- •Розділ 6. Тягові трансформатори
- •6.1. Умови роботи тягових трансформаторів
- •6.2 Трансформатори для різних систем регулювання напруги
- •6.3. Конструктивні особливості тягових трансформаторів
- •6.4. Системи охолодження тягових трансформаторів
- •Контрольні запитання
- •Розділ 7. Надпровідність та перспективи її застосування в трансформаторобудуванні
- •7.1 Загальні відомості
- •7.2 Надпровідники
- •7.3. Композитні провідники
- •7.4 Надпровідні обмотки
- •Контрольні запитання
- •8.1 Загальні відомості
- •8.2 Найбільш характерні області застосування реакторів
- •8.3. Надпровідні індуктивні накопичувачі енергії
- •Контрольні запитання
- •Література до вступу та частини 1
- •Зміст частини першої стор.
- •Контрольні запитання...............................................................
- •Контрольні запитання...............................................................
- •Контрольні запитання...............................................................
- •Контрольні запитання.................................................................
- •Контрольні запитання...................................................................
- •Контрольні запитання................................................................
- •Контрольні запитання..................................................................
- •9.1. Створення обертового магнітного поля в електричних машинах змінного струму
- •9.2. Вмикання трифазних асинхронних двигунів для живлення від однофазної мережі
- •9.3 Розщіплювачі фаз
- •9.3.1. Синхронні розщіплювачі фаз
- •Асинхронні розщіплювачі фаз
- •10.1 Застосування й основні функції електричних мікродвигунів
- •10.2 Класифікація виконавчих мікроелектродвигунів
- •10.3 Вимоги до виконавчих мікроелектродвигунів
- •10.3.2 Самохід виконавчих двигунів
- •10.3.3 Швидкодія
- •10.3.4. Відсутність радіозавад
- •10.3.5. Безшумність роботи
- •11.1. Принцип дії двофазного виконавчого асинхронного мікродвигуна
- •11.3. Гіроскопічні, моментні й тороїдні асинхронні двигуни
- •13.3.1. Гіроскопічні асинхронні двигуни
- •11. 3. 2. Моментні асинхронні двигуни
- •11. 3. 3. Тороїдні двигуни [39]
- •11. 4. 1 Амплітудне керування
- •11.4.2. Фазове керування
- •11.4.3. Просторове керування
- •11.4.4. Амплітудно-фазове керування
- •11.4.5. Комбіноване керування
- •12.1. Загальна характеристика й класифікація синхронних мікродвигунів
- •12.2. Синхронні виконавчі двигуни з постійними магнітами
- •12.3. Реактивні двигуни [40]
- •12.3.1. Переваги й недоліки синхронних реактивних двигунів
- •12.3.2. Обертаючий момент і електромагнітна потужність синхронних реактивних двигунів (срд)
- •12.3.3. Конструкція синхронних реактивних двигунів
- •12.3.4. Пуск срд
- •12.3.5. Коливання ротора срд
- •12.3.6. Однофазні й двофазні срд
- •12.3.7. Редукторний двигун
- •12.4. Гістерезисні двигуни
- •12.4.1. Коливання ротора гістерезисного двигуна
- •12.4.2. Однофазний синхронний гістерезисний двигун з екранованими полюсами
- •12.5. Крокові двигуни
- •Розділ 13. Виконавчі двигуни постійного струму
- •13.2. Способи керування виконавчими двигунами постійного струму
- •13.2.1. Якірне керування
- •13.2.2. Полюсне керування
- •13.2.3. Імпульсне керування виконавчими двигунами постійного струму [25]
- •13.2.4. Безколекторний мікропривод постійного струму
- •13.3. Пускові властивості й реакція якоря виконавчих двигунів постійного струму
- •13.4. Порівняння різних способів керування виконавчими двигунами постійного струму
- •13.5. Універсальний колекторний двигун
- •14.1. Конструкція, принцип дії, переваги й недоліки синхронних двигунів з ротором, який котиться
- •14.2. Параметри й застосування синхронних дкр
- •14.3. Різні виконання й класифікація електричних машин з ротором, який котиться (емкр)
- •14.4. Хвильові електродвигуни
- •14.5. Пускові й динамічні властивості двигунів з ротором, який котиться
- •15.1. Загальні відомості про тахогенератори
- •15.2. Конструктивні особливості й застосування тахогенераторів
- •15.3. Вихідна характеристика тахогенераторів постійного струму
- •15.4. Погрішності тахогенераторів постійного струму та способи їх зменшення
- •15.5. Переваги й недоліки тахогенераторів постійного струму. Робота в режимі акселерометра
- •15.6. Принцип дії асинхронного тахогенератора. Еквівалентна схема
- •15.7. Вихідна характеристика асинхронного тахогенератора
- •15.8. Погрішності асинхронного тахогенератора та способи їх зменшення
- •15.9. Застосування асинхронних тахогенераторів. Переваги й недоліки
- •15.10. Синхронний тахогенератор
- •16.1. Загальна характеристика, застосування та класифікація машин систем синхронної передачі
- •16.2. Трифазні синхронні передачі
- •16.3 Контактні однофазні сельсини
- •16.3.1 Конструкція контактних однофазних сельсинів
- •16.3.2. Робота контактних сельсинів у індикаторному режимі
- •16.3.3 Робота контактних сельсинів у трансформаторному режимі
- •16.4 Одновісні сельсини
- •16.5. Безконтактні сельсини
- •16.6. Магнесини
- •16.7. Диференціальний сельсин
- •16.8. Спеціальні режими роботи сельсинів
- •16.9. Погрішності в сельсинах та способи їх зменшення
- •16.10. Сельсин-двигун
- •17.1. Загальна характеристика, застосування й основні режими роботи поворотних трансформаторів
- •17.2. Принцип роботи поворотного трансформатора
- •17.3. Симетрований синусно-косинусний поворотний трансформатор
- •17.4. Лінійний поворотний трансформатор
- •17.5. Поворотний трансформатор–побудувач та перетворювач координат
- •17.6. Масштабний поворотний трансформатор
- •17.7. Робота поворотного трансформатора в режимі фазообертача
- •17.8. Трансформаторна синхронна передача на поворотних трансформаторах
- •17.9. Погрішності поворотних трансформаторів та способи їх зменшення
- •Зміст частини другої стор.
- •Розділ 13. Виконавчі двигуни постійного струму…………………..
16.6. Магнесини
Недоліки контактних сельсинів сильно впливають при передачі кута на малі відстані з малим моментом опору виконавчого механізму. Звичайно до таких пристроїв додатково ставляться вимоги мінімальних габаритів та маси. В контактних сельсинах момент тертя може бути сумісним з моментом опору виконавчого механізму, що значно збільшує погрішність. Безконтактні сельсини розглянутих конструкцій також не можуть в цьому випадку бути застосовані у зв’язку з відносно великими габаритами й масою. Одним з рішень цієї задачі є застосування магнітоелектричних безконтактних сельсинів – магнесинів.
Рис. 16.15. Схема вмикання магнесинів
Уперше такі мікромашини були застосовані в 1942р. в авіаційному дистанційному компасі. Схема з’єднання магнесинів наведена на рис.16.15. Особливості конструкції магнесинів полягають у тому, що ротор виконується з двополюсного циліндричного постійного магніту, який намагніченій у діаметральному напрямі. Кільцева статорна обмотка, яка живиться однофазним змінним струмом, розташовується на тороїдному статорі, який шихтований з окремих пластин пермалою. Статор розташовується всередині циліндричного осердя (екрану) з листового пермалою. Це осердя відіграє подвійну роль: слугує для замкнення магнітного потоку при насиченні осердя статора й забезпечує однорідність магнітного поля навколо статора. Точки 1, 2, 3, до яких приєднуються лінії живлення та зв’язку, розташовуються під кутами 120º та рівномірно поділяють обмотку.
Рис. 16.16. Графіки магнітних залежностей в магнесині
В магнесині роль обмотки збудження відіграє постійний магніт-ротор. При живленні обмотки статора магнесина змінним струмом з частотою ƒ у тороїді осердя статора створюється змінний магнітний потік Фзб. На рис.16.16 наведено криву зміни цього потоку й низки інших величин, вважаючи їх синусоїдними.
Оскільки пермалой має вузьку петлю гістерезису, можливо наближено вважати, що залежність між індукцією В та напруженістю Н магнітного поля є однією кривою (без гістерезису). Тому магнітна проникливість μ та магнітна провідність λ за період двічі досягають максимуму й мінімуму.
Крім змінного потоку Фзб, по статорному опору замикається потік Фс, який створюється ротором (рис.16.15). Внаслідок того, що магнітна провідність λ змінюється з подвоєною частотою, потік Фс пульсує з тією ж частотою (рис.16.16). Ці пульсації магнітного потоку Фс індукують в обмотці статора ЕРС Ес з частотою 2ƒ.
В дійсності в наслідок насичення осердя статора виникають вищі гармоніки в кожній з кривих, наведених на рис.16.16.
Якщо осі роторів датчика й приймача знаходяться в однаковому положенні відносно обмоток статорів, то точки 1, 2, 3 є еквіпотенціальними по відношенню як до напруги з частотою ƒ, так і до ЕРС Ес Тому струми в лініях зв’язку будуть відсутніми.
В тому разі, коли ротор датчика повернеться на деякий кут, а ротор приймача останеться в попередньому положенні, струми з частотою ƒ по лініям зв’язку проходити не будуть, оскільки обмотки статорів для них остануться потенціально врівноваженими. В лініях зв’язку почнуть проходити струми подвоєної частоти, оскільки потенціали точок 1, 2, 3 залежать від положення ротора (від того, скільки витків кожної з ділянок 1-2, 2-3, 3-1 перетинається потоком Фс, який розгалужується).Зрівняльні струми з частотою 2ƒ взаємодіють з потоком Фс, створюючи синхронізуючий момент, який намагається як в датчику – так і в приймачі погодити положення роторів магнесина.
Таким чином, в межах одного оберту магнесин має властивості самосинхронізації.