- •Лекція 1. Аналіз стану електронних систем
- •1.1. Простір станів, передатна функція електронних систем
- •1.2. Моделі автокореляційних функцій стаціонарних сигналів
- •1.3. Двовимірна оцінка похибок апроксимації
- •1.4. Моделі спектрального аналізу стаціонарних сигналів
- •Спектральний аналіз
- •Лекція 2. Механізми перетворення випадкових сигналів
- •2.1. Механізми виникнення випадкових корисних сигналів
- •2.2. Механізми генерації білих та кольорових завад
- •2.3. Оцінка відношення дисперсій сигнал-перешкода та вплив на граничні помилки не реалізованих електронних систем
- •Лекція 3. Структурний стохастичний синтез завадостійких систем
- •3.1. Структурний та параметричний синтез
- •3.2. Операції факторизації та сепарації.
- •Задачі фільтрація вимірювальної інформації
- •Лекція 4
- •4.1. Стохастика каналів керування першого порядку
- •4.2. Стохастичний синтез форсованих систем другого порядку
- •Невідомі параметри знайдемо із системи рівнянь:
- •В алгебраїчній формі вони дорівнюють:
- •Методика Ван-Трiса.
- •4.3. Приклади стохастичного синтезу систем третього порядку.
- •Позначимо відомі параметри сигналів:
- •4.4. Структурний синтез систем довільного порядку.
- •Лекція 5. Стохастична фільтрація
- •5.1 Стохастична фільтрація в каналах вимірювання
- •5.2. Структурна фільтрація рожевої завади
- •5.3. Структура системи фільтрації червоної завади.
- •Лекція 6. Аналіз усталених та перехідних похибок
- •6.1. Вплив безрозмiрних параметрiв сигналу на усталену похибку системи
- •6.2. Дослідження вільної складової руху системи
- •Номограми розрахунку мiнiмальної усталеної похибки I показникiв якостi динамічних систем
- •Лекція 7. Декомпозиція електронної системи
- •7.1. Структура та раціональний порядок елементарної ланки
- •7.2. Послідовне ввімкнення елементарних ланок
- •7.3. Паралельне ввімкнення ланок
- •7.4. Розмикання передатних функцiй форсованих систем
- •Лекція 8. Фільтри Баттерворта, Чебишева, Бесселя та Кауера
- •8.1. Інженерні методи розрахунку аналогових фільтрів
- •Огляд популярних аналогових фільтрів
- •8.2. Порівняльний аналіз амплітудних і фазових характеристик фільтрів Баттерворта, Чебишева та еліптичного.
- •Лекція 9. Цифрові віртуальні фільтри
- •9.1 Структура системи цифрової обробки аналогових сигналів
- •9.2. Нерекурсивні фільтри з кінцевою імпульсною характеристикою
- •9.3. Рекурсивні фільтри з нескінченною імпульсною характеристикою
- •9.4. Фільтри зі змінюваною частотою дискретизації
- •9.5. Адаптивні фільтри
- •9.6. Вплив періоду дискретизації на динаміку електронної системи
- •Дискретний сигнал і його спектр описуються формулами:
- •Лекція 10. Програмно-апаратні засоби спряження з пк
- •10.1. Розробка блоку автоматичної аттенюації
- •10.2. Блок перетворення коду і рівнів сигналу при передачі/прийомі інформації з інтерфейсу rs-232c
- •Лекція 11. Синтез інтелектуальних завадостійких давачів
- •Експоненційне згладжування
- •Застосування експоненційної і стохастичної фільтрації
- •11.3. Фільтрація з врахуванням динамічних можливостей датчика
- •11.3.1. Фільтрація з урахуванням динамічних властивостей датчика.
- •11.4. Суміщення фільтрації та інтерполяції (екстраполяції)
- •Лекція 12. Стохастичний синтез завадостійких систем нижнього рівня
- •12.1. Інженерна методика розрахунку систем автоматичного регулювання технологічних параметрів
- •12.2. Методика структурного синтезу завадостійких контурів компенсації збурень
- •Аналогічне відношення для нефорсованої системи
Застосування експоненційної і стохастичної фільтрації
Основним фактором, що обумовлює практичну придатність того чи іншого фільтра, є чутливість погрішності фільтрації до точності, з якою задані статистичні характеристики корисного сигналу і особливо завади, оскільки остання в реальних умовах відома лише при грубому наближенні. Аналіз цього фактора показує, що чутливість фільтрів до змін параметрів завади в значному діапазоні практично однакова для любих розглянутих вище фільтрів. Однак при грубих оцінках кореляційної функції завади, прості фільтри дають трохи меншу дискретну похибку.
В цілому можна виразити наступні міркування по застосуванню окремих алгоритмів фільтрації.
Розповсюджену в практиці вимірювальних систем фільтрацію методом ковзного середнього недоцільно застосовувати ні в неперервному, ні в дискретному варіантах. Вона складна і дає велику похибку, у порівнянні з розглянутими вище більш простими фільтрами.
Якщо за характером задач вихідний сигнал
використовується лише у дискретні
моменти часу, то необхідно враховувати,
що дискретний варіант фільтра майже
завжди більш точний і більш простий.У неперервному варіанті доцільно, в більшості практичних випадків, використовувати експоненційний фільтр (11.2) (11.6), так як його легше реалізувати (одноємнісна ланка у вимірювальному колі) і він тільки на 10-30% поступається у якості фільтрації оптимальному статистичному фільтру. Область застосування фільтра експоненціального згладжування досить велика (11.7).
У дискретному варіанті при знанні математичного сподівання вимірюваного сигналу з точністю 1–3% стає доцільним застосування зміщеного фільтра першого порядку (11.21) – (11.23), який в значному діапазоні вихідних даних сигналу і завади лише на 5–10% поступається за точністю оптимальному статистичному фільтру. При неточному знанні математичного сподівання корисного сигналу (більше 3%) конкурентними стають між собою алгоритми експоненціального згладжування (11.10), (11.16), (11.17) та незміщеного фільтра першого порядку (11.26) –(11.28). Вони хоча і дають похибку фільтрації, на 30–70% перевищуючи похибку роботи оптимального статистичного фільтра, однак виключно прості у реалізації на ЕОМ, що дуже необхідно при наявності датчиків і сотень вимірювальних в системі контролю і керування змінних, спотворених завадами. Рекурентний алгоритм експоненціального згладжування дає кращі результати, ніж незміщений алгоритм першого порядку. Особливо це видно при значних величинах параметра завади . Для більш детальних практичних рекомендацій по експоненціальному згладжуванню необхідно дослідити роботу рекурентного алгоритму (11.10) з різними виразами для параметра
(11.6), (11.16), (11.17) при діапазоні
.
11.3. Фільтрація з врахуванням динамічних можливостей датчика
Прикладні питання використання засобів обчислювальної техніки в системах керування і наукових дослідженнях, торкаючи такі основні задачі обробки вимірюваної інформації, як побудова шкал датчиків в ЕОМ, операції інтерполяції і екстраполяції, а також фільтрації вимірювальної інформації від завад, викладені послідовно і як би у відриві одне від одного. Така манера викладення виправдана спочатку, доки це не чіпає сусідніх проблем цих додатків. Разом з тим на практиці створення вимірювальних систем ці операції провадяться спільно і потребують не тільки моделювання статичних властивостей, але й урахування їх динамічних характеристик.
