Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Konspekt_lektsy_Stokhastika.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
6.94 Mб
Скачать

Методика Ван-Трiса.

Виконаємо операцiю факторизацiї, коли комплексно спряженi функцiї, всi нулi та полюси яких знаходяться вiдповiдно в верхнiй та нижнiй напiвплощинах параметра частоти, дорiвнюють:

Оптимальна передаточна функцiя дорiвнює:

Пiсля перетворень одержали передатну функцію форсованої ланки другого порядку:

, (4.27)

дe K – коефiцiєнт передачi;

Т,Т1 – постiйнi часу;

ξ – вiдносний коефiцiєнт затухання.

Постiйна часу знаменника дорiвнює:

, (4.28)

де μ – параметр затухання корисного сигналу;

ψ – cтупiнь регулярностi корисного сигналу;

α – вiдношення середньоквадратичних вiдхилень сигналу i перешкоди.

Чим бiльше ступiнь регулярностi корисного сигналу, тим менше згаданий добуток, що тим сильнiше, чим бiльше вiдношення параметрiв сигналу i перешкоди.

Вiдносний коефiцiєнт затухання:

. (4.29)

Для дуже малого вiдносного рiвня перешкоди вiдносний коефiцiєнт затухання не залежить вiд ступеня регулярностi корисного сигналу i наближається до постiйного значення 0,707. Для дуже великого рiвня перешкоди формула для оцiнки добутку постiйної часу на параметр затухання спiвпадає з вiдносним коефiцiєнтом затухання:

.

Вiдносний коефiцiєнт затухання завжди менше одиницi, для одиничного ступеня регулярностi корисного сигналу дорiвнює 0,707 незалежно вiд корисного сигналу i перешкоди. Для ступеня регулярностi в межах вiд нуля до одиницi вiдносний коефiцiєнт затухання знаходиться в межах вiд 0,707 до одиницi.

Коефiцiєнт передачi системи дорiвнює:

. (4.30)

Чим бiльше ступiнь регулярностi корисного сигналу, тим менше значення коефiцiєнту передачi. Для дуже малого рiвня перешкоди коефiцiєнт передачi дорiвнює одиницi i не залежить вiд ступеня регулярностi. При дуже великому рiвнi перешкоди коефiцiєнт передачi зменшується до нуля.

Постiйна часу форсування:

. (4.31)

Добуток постiйної часу на параметр затухання корисного сигналу зменшується з ростом ступеня регулярностi i збiльшенням рiвня перешкоди. Коли вiдносний рiвень перешкоди дуже малий, указаний добуток не залежить вiд ступеня регулярностi i дорiвнює 0,5.

Для поширених в техніці спектральних щiльностей корисних сигналів без періодичної складової та з періодичною складовою, яка описується диференційною і недиференційною функціями, а також більш складних моделей та перешкоди в виді білого шуму виконали оптимальний синтез перешкодостійких систем. Повні і неповні поліноми характеристичних рівнянь сигналу мають порядок два, чотири, шість, що відповідає такій же кількості полюсів, причому в двох останніх випадках можуть включати дві пари комплексно-спряжених, характеризуючих коливальні процеси (приклади стохастичного синтезу наведені в додатку 1).

4.3. Приклади стохастичного синтезу систем третього порядку.

Добуток випадкових процесів з періодичної (диференційний) і неперіодичною складовими дає корисний сигнал у вигляді:

Сума корисного сигналу з перешкодою:

де

Розкладемо окремо чисельник і знаменник на добутки із шести членів кожний, або з трьох пар комплексно-спряжених коренів, із яких одна пара не має дійсної частини:

В другому вигляді:

Рівняння мають однакові знаменники, а всі члени чисельника мають таку ж структуру, крім вільного члену. Тотожність чисельників можлива при умовах, коли постійні коефіцієнти і вільний член однакові, тобто:

(4.32)

Праві частини трьох рівнянь відомі, як постійні параметри сигналу і перешкоди, а в лівій знаходяться три змінні, які треба знайти, так як вони показують розташування коренів чисельника.

Позначимо відомі значення коефіцієнтів:

а невідомі через:

Тоді система рівнянь має вигляд:

(4.33)

Знайдемо невідомі. З останнього рівняння z=c/x, тоді:

.

Оскільки y=a-c/x, тоді з останнього рівняння одержали:

(4.34)

Використаємо відоме рішення Кардано, коли підстановка x=r-b/3 приводить до вигляду:

Тут

Корені неповного рівняння:

Знайшовши дійсний корінь , визначили х, потім із третього рівняння системи – z, а з першого – у.

По умові , а і знайдемо із рівнянь:

Знайдемо суму, тоді:

а відповідна різниця дає:

Таким чином визначено координати всіх нулів спектральної щільності сумарного сигналу.

Розглянемо більш загальний вигляд мультипликативного корисного сигналу, який включає добуток двох випадкових процесів з періодичною складовою, апроксимованих диференційними функціями, та адитивної перешкоди:

В іншому вигляді:

.

Тут

Розкладаємо окремо чисельник і знаменник на добутки із восьми простих членів, кожний із яких включає чотири комплексно-спряжені, причому одна пара комплексно-спряжених коренів має всього два параметри – дійсну та уявну частини:

В вигляді двох добутків поліномів четвертого ступеня:

Розкривши дужки, одержали:

Тотожність рівнянь можлива, коли постійні коефіцієнти та вільні члени однакові, тобто:

Чотири рівняння включають чотири невідомі параметри n1, m1, n2, m2 праві частини відомі по визначенню сигналів.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]