- •3. Этапы построения эконометрической модели.
- •4. Спецификация моделей парной регрессии.
- •5. Случайный член, причины его существования.
- •6. Условия нормальной линейной регрессии (Гаусса-Маркова)
- •7. Метод наименьших квадратов
- •8. Свойства коэффициентов регрессии.
- •9. Нелинейная регрессия. Методы линеаризации.
- •10. Функциональная спецификация модели парной регрессии.(Вопрос4)
- •12. Определение тесноты связи между факторами: линейный коэффициент корреляции, коэффициент детерминации.
- •13. Оценка тесноты связи в нелинейной регрессионной модели.
- •14. Оценка существенности параметров и статистическая проверка гипотез. T-критерий Стьюдента.
- •15. Взаимосвязь t-статистики и f-статистики для парной регрессии.
- •16. Коэффициент эластичности. Его смысл и определение.
- •17. Оценка статистической значимости уравнения в целом. F-критерий Фишера.
- •18. Модель множественной регрессии.
- •19. Ограничения модели множественной регрессии.
- •20. Идентификация параметров множественной регрессии мнк.
- •21. Интерпретация множественного уравнения регрессии.
- •22. Показатели тесноты связи во множественном регрессионном анализе - парные и частные коэффициенты корреляции.
- •23. Уравнение множественной регрессии в стандартизованном масштабе (назначение, формулы перехода к естественной форме)
- •24. Коэффициент множественной корреляции, скорректированный коэффициент множественной корреляции, множественный коэффициент детерминации.
- •25. Оценка статистической значимости множественных коэффициентов регрессии, t-критерий Стьюдента.
- •26. Модели с переменной структурой (фиктивные переменные).
- •27. Оценка статистической значимости множественного уравнения регрессии, f-критерий Фишера.
- •28. Спецификация модели множественной регрессии. Свойства множественных коэффициентов регрессии.
- •29. Решение проблемы выбора модели (с ограничением и без ограничения). Методы отбора факторов: априорный и апостериорный подходы.
23. Уравнение множественной регрессии в стандартизованном масштабе (назначение, формулы перехода к естественной форме)
Просмотров: 12421
Уравнение множественной регрессии в стандартизованном масштабе:
,
где
-
стандартизованные переменные
β - стандартизованные коэффициенты регрессии.
,
,
для которых среднее значение равно
нулю:
,
a среднее квадратическое отклонение
равно единице:
;
Применяя МНК к уравнению множественной регрессии в стандартизованном масштабе, после соответствующих преобразований получим систему нормальных уравнений вида:
Решая его методом определителей, найдем параметры – стандартизованные коэффициенты регрессии (β - коэффициенты).
Стандартизованные коэффициенты регрессии показывают, на сколько сигм изменится в среднем результат, если соответствующий фактор хi изменится на одну сигму при неизменном среднем уровне других факторов. В силу того, что все переменные заданы как центрированные и нормированные, стандартизованные коэффициенты регрессии βi сравнимы между собой. Сравнивая их друг с другом, можно ранжировать факторы по силе их воздействия на результат. В этом основное достоинство стандартизованных коэффициентов регрессии в отличие от коэффициентов «чистой» регрессии, которые не сравнимы между собой.
В
парной зависимости стандартизованный
коэффициент регрессии является линейным
коэффициентом корреляции ryx. Подобно
тому, как в парной зависимости
стандартизованный коэффициент регрессии
и корреляции связаны между собой, так
и во множественной регрессии коэффициенты
«чистой регрессии» bi связаны со
стандартизованными коэффициентами
регрессии βi, а именно:
Это позволяет от уравнения регрессии в стандартизованном масштабе
переходить к уравнению регрессии в натуральном масштабе переменных:
.
Параметр а определяется как
.
Рассмотренный смысл стандартизованных коэффициентов регрессии позволяет их использовать при отсеве факторов – из модели исключаются факторы с наименьшим значением βi.
При
двухфакторном анализе для уравнения
регрессии в стандартизованном
масштабе
β-коэффициенты могут
быть определены с помощью коэффициентов
частной корреляции по формулам:
При нелинейной зависимости признаков, приводимой к линейному виду, параметры множественной регрессии также определяются МНК с той лишь разницей, что он используется не к исходной информации, а к преобразованным данным. Так, рассматривая степенную функцию
,
мы преобразовываем ее в линейный вид
,
где переменные выражены в логарифмах.
Далее обработка МНК та же: строится система нормальных уравнений и определяется параметры lga, b1, b2,…, bp. Потенцируя значение lga, найдем параметр а и соответственно общий вид уравнения степенной функции.
24. Коэффициент множественной корреляции, скорректированный коэффициент множественной корреляции, множественный коэффициент детерминации.
Просмотров: 6969
Экономические явления чаще всего адекватно описываются именно многофакторными моделями. Поэтому возникает необходимость обобщить рассмотренное выше корреляционное отношение (6.4) на случай нескольких переменных.
Теснота линейной взаимосвязи между переменной y и рядом переменных xj, рассматриваемых в целом, может быть определена с помощью коэффициента множественной корреляции.
Предположим, что переменная y испытывает влияние двух переменных - x и z. В этом случае коэффициент множественной корреляции может быть определен по формуле:
|
(6.9) |
где ryx, ryz, rxz - простые коэффициенты линейной парной корреляции, определенные из соотношения (6.4).
Коэффициент множественной корреляции заключен в пределах 0 ≤ R ≤ 1. Он не меньше, чем абсолютная величина любого парного или частного коэффициента корреляции с таким же первичным индексом.
С помощью множественного коэффициента (по мере приближения R к 1) делается вывод о тесноте взаимосвязи, но не о ее направлении. Величина R2, называемая множественным коэффициентом детерминации, показывает, какую долю вариации исследуемой переменной (y) объясняет вариация остальных учтенных переменных (x, z).
Скорректированный индекс множественной детерминации содержит поправку на число степеней свободы и рассчитывается по формуле:
где
n-число наблюдений; m – число факторов.
