Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
эконометрика экзамен!.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
275 Кб
Скачать

1. Эконометрика – самостоятельная дисциплина, объединяющая совокупность теоретических результатов, приемов, методов и моделей, позволяющих на базе экономической теории, статистики  математико-статистического инструментария придавать количественное выражение качественным закономерностям, обусловленным экономической теорией.

Основные задачи:

  1. построение эконометрических моделей, т.е. представление экономических моделей в математической форме (спецификация)

  2. оценка параметров построенной модели, делающих выбранную модель наиболее адекватной реальным данным (параметризация)

  3. проверка качества найденных параметров модели с помощью критерия Стьюдента и всей модели в целом с помощью критерия Фишера (верификация)

  4. использование построенных моделей в целях прогнозирования и предсказания.

Основным  предметом исследования эконометрики являются массовые экономические явления и процессы.

Основные эконометрические методы.

1.       сводка и группировка информации;

Статистическая сводка - это научно организованная обработка материалов наблюдения, включающая в себя систематизацию, группировку данных, составление таблиц, подсчет итогов, расчет производных показателей (средних, относительных величин).  Статистическая группировка - это процесс образования однородных групп на основе расчленения статистической совокупности на части или объединения изучаемых единиц в частные совокупности по существенным для них признакам.

2вариационный и дисперсионный анализ;   

 Дисперсия признака - это средний квадрат отклонений вариантов от их средней величины.                                                         В эконометрических расчетах, как правило, используют общую, межгрупповую и внутригрупповую дисперсии. При этом общая дисперсия характеризует вариацию признака в статистической совокупности в результате влияния всех факторов. Межгрупповая дисперсия показывает размер отклонения групповых средних от общей средней, то есть характеризует влияние фактора, положенного в основание группировки. Внутригрупповая (остаточная) дисперсия характеризует вариацию признака в середине каждой группы статистической группировки.                                                                                                                                          В эконометрических расчетах используется среднее квадратическое отклонение - обобщающая характеристика размеров вариации признака в  совокупности. Оно равно корню квадратному из дисперсии. Для осуществления сравнений колеблемости одного и того же признака в нескольких совокупностях используется относительный показатель вариации — коэффициент вариации.

2.       регрессионный и корреляционный анализ;                                                               

Применение метода наименьших, квадратов (МНК) позволяет получить достаточно точные теоретические значения модели однофакторной регрессии и соответственно ее графическое изображение (термин "регрессия" - движение назад, возвращение в прежнее состояние, - был введен Фрэнсисом Галтоном в конце XIX века при анализе зависимости между ростом родителей и ростом детей; в любом случае средний рост детей - и у низких, и у высоких родителей -стремится (возвращается) к среднему росту людей в данном регионе).

3.       статистические уравнения зависимости;

4.       статистические индексы и др.                                                                           

Статистические индексы могут быть использованы в качестве меры изменения количества независимо от изменения качественного признака (цены, себестоимости, производительности труда и т.п.), а также для характеристики качественного признака независимо от изменения количества (объема продукции в натуральном выражении, численности работников и т.п.).

2.

Модель – это приближенное описание реальных объектов, процессов, явлений в аспектах, интересующих исследователя.

По целевому назначению экономико-математические модели делятся на:

ü теоретико-аналитические, используемые в исследовании общих свойств и закономерностей экономических процессов;

ü прикладные, используемые для решения конкретных экономических задач (модели экономического анализа, прогнозирование, управление).

Экономико-математические модели могут предназначаться для исследования разных сторон народного хозяйства (производственно-технологической, территориальной) и его отдельных частей.

При классификации моделей по исследуемым экономическим процессам и содержательной проблематикевыделяются модели народного хозяйства в целом и его отдельных подсистем-отраслей, регионов и т.д., комплексы моделей производства, потребления, формирования и распределения доходов, трудовых ресурсов, ценообразования, финансовых связей и т. д.

В исследованиях на народнохозяйственном уровне чаще применяются структурные или структурно-функциональные модели, поскольку для планирования и управления большое значение имеют взаимосвязи подсистем. Функциональные модели широко применяются в экономическом регулировании.

Различают дескриптивные и нормативные модели. Дескриптивные модели объясняют наблюдаемые факты или дают вероятностный прогноз. Нормативные отвечают на вопрос: как это должно быть?, т. е. предполагают целенаправленную деятельность. Примером нормативной модели являются модели оптимального планирования, формализующие тем или иным способом цели экономического развития, возможности и средства их достижения. Примерами дескриптивных моделей являются производственные функции и функции покупательного спроса, построенные на основе обработки статистических данных.

По характеру отражения причинно-следственных связей различают модели жестко детерминистские и модели, учитывающие случайность и неопределенность. В результате накопления опыта использования жестко детерминистских моделей были созданы реальные возможности успешного применения более совершенной методологии моделирования экономических процессов, учитывающих стохастику и неопределенность: проведение многовариантных расчетов и модельных экспериментов с вариацией конструкции модели и ее исходных данных; изучение устойчивости и надежности получаемых решений, выделение зоны неопределенности, включение в модель резервов; применение приемов, повышающих приспособляемость(адаптивность) экономических решений к вероятным и непредвиденным ситуациям. Получают распространение модели непосредственно отражающие стохастику и неопределенность экономических процессов и использующие соответствующий математический аппарат: теорию вероятностей и математическую статистику, теорию игр и статистических решений, теорию массового обслуживания, теорию случайных процессов.

По способам отражения фактора времени экономико-математические модели делятся на: статистические и динамические. В статистических моделях все зависимости относятся к одному моменту времени. Динамические модели характеризуют изменение экономических процессов во времени.

Общая классификация экономико-математических моделей включает более десяти основных признаков. С развитием экономико-математических исследований проблема классификации применяемых моделей усложняется. Наряду с появлением новых типов моделей (особенно смешанных типов) и новых признаков их классификаций, осуществляется процесс интеграции моделей разных типов в более сложные модельные конструкции.Обычно выделяются два типа выборочных данных:

·         Пространственная выборка (cross-sectional data) — набор экономических показателей, полученных в некоторый момент времени (иначе говоря, примерно в неизменных условиях), т.е. набор независимых выборочных данных из некоторой генеральной совокупности (так как практически независимость случайных величин проверить трудно, то обычно за независимые принимаются величины, не связанные причинно);

·         Временной (динамический) ряд (time-series data) — выборка, в которой важны не только сами наблюдаемые значения, но и порядок их следования друг за другом. Чаще всего данные представляют собой последовательные наблюдения одной и той же величины в последовательные моменты времени.

Исходная информация для построения эконометрических моделей представляет собой данные по совокупности признаков (двух или более), характеризующих объект исследования. Признаки, как правило, взаимосвязаны и могут выступать в одной из двух ролей: в роли результативного признака (зависимая переменная y) или в ролифакторного признака (независимая переменная x), значения которого определяют значение результативного признака.

В эконометрике принято результативный признак называть объясняемой переменной, а факторный признак –объясняющей переменной.

Переменные, участвующие в эконометрической модели, можно отнести к одному из следующих видов:

экзогенные (независимые, x) – переменные, значения которых задаются извне, автономно, в определенной степени они являются управляемыми или планируемыми;

эндогенные (зависимые, y) – переменные, значения которых определяются внутри модели, в существенной мере под воздействием экзогенных переменных;

лаговые – экзогенные или эндогенные переменные, значения которых измерены в прошлые моменты времени, и находятся в эконометрической модели вместе с текущими переменными. Например: yt – текущая эндогенная переменная, yt-1, yt-2 – лаговые эндогенные переменные;

предопределенные – переменные, выступающие в роли факторных признаков, или объясняющие переменные. К ним относятся лаговые (xt-1) и текущие (xt) экзогенные переменные, а также лаговые эндогенные переменные (yt-1).

Эконометрическая модель любого типа предназначена для объяснения поведения эндогенных (текущих) переменных в зависимости от значений экзогенных и лаговых эндогенных переменных.

3. Этапы построения эконометрической модели.

Просмотров: 14067

Весь процесс эконометрического моделирования можно разбить на шесть основных этапов.

1-й этап (постановочный) - определение конечных целей моделирова­ния, набора участвующих в модели факторов и показателей, их роли;

2-й этап (априорный) - предмодельный анализ экономической сущности изучаемого явления, формирование и формализация априорной информации и исходных допущений, в частности относящейся к природе и генезису исходных статистических данных и случайных остаточных составляющих в виде ряда ги­потез;

3-й этап (параметризация) - собственно моделирование, т.е. выбор общего вида модели, в том числе состава и формы входящих в неё связей между переменными;

4-й этап (информационный) - сбор необходимой статистической информации, т.е. регистрация значений участвующих в модели факторов и показате­лей;

5-й этап (идентификация модели) - статистический анализ модели и в первую очередь статистическое оценивание неизвестных параметров модели Непосредственно связан с проблемой идентифицируемости модели, то есть ответа на вопрос «Возможно ли в принципе однозначно восстановить значения неизвестных параметров модели по имеющимся исходным данным в соответст-вии с решением, принятым на этапе параметризации?». После положительного ответа на этот вопрос необходимо решить проблему идентификации модели то есть предложить и реализовать математически корректную процедуру оценива­ния неизвестных параметров модели по имеющимся исходным данным;

6-й этап (верификация модели) — сопоставление реальных и модельных данных, проверка адекватности модели, оценка точности модельных данных.

4. Спецификация моделей парной регрессии.

Просмотров: 1984

Парная регрессия представляет собой модель вида y=f(x). В каждом отдельном случае yi=y¯xi +Ei, где

yi – значение результативного признака; y¯xi – теоретическое значение результативного признака; Ei – СВ или возмущение.

Ei зависит:

  1. от ошибок спецификации

    1. неправильный выбор математической функции

    2. недоучет в уравнении регрессии какого-либо существенного фактора

  2. от ошибок выборки. Возникает в силу неоднородности данных и уравнение регрессии, построенное с учетом аномальных наблюдений, не имеет смысла.

  3. от ошибок измерения. На ошибки измерения исследователь влиять не может

В эконометрическом исследовании используются следующие типы функций:

  • линейная

  • парабола 2 и 3 порядка

  • гипербола

  • степенная

  • показательная

Выбор вида математической функции осуществляется 3 методами:

  1. графический

  2. аналитический

  3. экспериментальный

5. Случайный член, причины его существования.

Просмотров: 3308

Рассмотрим простейшую линейную модель парной регрессии:

y = a+bx+ε                (2.1)

Величина y, рассматриваемая  как зависимая переменная, состоит из двух составляющих: неслучайной составляющей, а+bх и случайного члена ε.

Случайная величина ε называется также возмущением. Она включает влияние не учтенных в модели факторов, случайных ошибок и особенностей измерения.

Причин существования  случайной составляющей несколько.

1. Не включение объясняющих переменных. Соотношение между y и x является упрощением. В действительности существуют и другие факторы, влияющие на y, которые не учтены в (2.1). Влияние этих факторов приводит к тому, что наблюдаемые точки лежат вне прямой у = а+bх.

Часто встречаются факторы, которых следовало бы включить в регрессионное уравнение, но невозможно этого сделать в силу их количественной неизмеримости. Возможно, что существуют также и другие факторы, которые оказывают такое слабое влияние, что их в отдельности не целесообразно учитывать, а совокупное их влияние может быть уже существенным. Совокупность всех этих составляющих и обозначено в (2.1) через ε.

2. Агрегирование переменных. Рассматриваемая зависимость (2.1) – это попытка объединить вместе некоторое число микроэкономических соотношений. Так как отдельные соотношения,  имеют разные параметры, попытка объединить их является аппроксимацией. Аппроксима́ция, или приближе́ние — научный метод, состоящий в замене одних объектов другими, в том или ином смысле близкими к исходным, но более простыми. Наблюдаемое расхождение приписывается наличию случайного члена ε.

3. Выборочный характер исходных данных.  Поскольку исследователи чаще всего имеет дело с выборочными данными при установлении связи между у и х, то возможны ошибки и в силу неоднородности данных в исходной статистической совокупности. Для получения хорошего результата обычно исключают из совокупности наблюдения с аномальными значениями исследуемых признаков.

4. Неправильная функциональная спецификация. Функциональное соотношение между у и х математически может быть определено неправильно. Например, истинная зависимость может не являться линейной, а быть более сложной. Следует стремиться избегать возникновения этой проблемы, используя подходящую математическую формулу, но любая формула является лишь приближением истинной связи у и  х  и существующее расхождение вносит вклад в остаточный член.

5. Возможные ошибки  измерения.