- •Цифровые и микропроцессорные устройства
- •Часть 1 Основы цифровой техники
- •27 Мая 2010 г., протокол № 9
- •Системы счисления. Основные понятия. Выбор системы счисления для цифровых устройств
- •Перевод чисел из одной позиционной системы счисления в другую
- •Представление двоичных чисел в формах с фиксированной и плавающей точкой
- •Способы кодирования двоичных чисел
- •Арифметические операции над двоичными числами с фиксированной точкой
- •Особенности арифметических операций над двоичными числами с плавающей точкой
- •Сложение двоично-десятичных чисел
- •Символьные коды
- •Структурные единицы и форматы цифровых данных
- •Понятие о логических функциях, логических элементах и логических устройствах
- •Классификация логических устройств
- •Способы задания логических функций
- •Элементарные логические функции одного аргумента
- •Элементарные логические функции двух аргументов
- •Основные законы и тождества алгебры логики
- •Понятие базиса и минимального базиса
- •Преобразование логических функций из основного базиса в неосновные
- •Общие сведения об элементной базе цифровой техники
- •Классификация цифровых интегральных схем
- •Обозначения цифровых интегральных схем
- •Основные статические и динамические параметры логических элементов
- •Типы выходных каскадов цифровых элементов
- •Логический выход
- •Выход с тремя состояниями
- •Выход с открытым коллектором (стоком)
- •Построение узлов цифровых устройств на стандартных микросхемах
- •Схемотехника входных цепей элементов кмоп и режимы временно разомкнутых входов
- •Этапы синтеза комбинационных цифровых устройств
- •Канонические формы представления логических функций
- •Исходные положения к минимизации
- •Этапы минимизации
- •Табличный метод минимизации
- •Литература
- •Содержание
- •Цифровые и микропроцессорные устройства
- •Часть 1 Основы цифровой техники
- •220114, Минск, ф.Скорины, 8/2
Классификация логических устройств
В цифровой технике для обозначения различной информации пользуются кодовыми словами, которые представляют собой последовательность символов 0 и 1 (логических переменных), например: 10111011.
Цифровые устройства (либо их узлы) можно классифицировать по различным признакам.
По способу ввода и вывода кодовых слов различают логические устройства параллельного, последовательного и смешанного действия. В логических устройствах параллельного действия все n символов каждого входного слова подаются одновременно, т.е. в параллельном коде. В такой же форме на выходе образуется выходное слово. Очевидно, что в этом случае в устройстве необходимо иметь отдельный вход (выход) для каждого разряда входного (выходного) слова. В логических устройствах последовательного действия символы входного кодового слова поступают не одновременно, а последовательно во времени, символ за символом, т.е. в последовательном коде. В такой же последовательной форме выдается выходное слово. В логических устройствах смешанного действия входные и выходные кодовые слова представляются в различных формах. Такие устройства могут использоваться для преобразования кодовых слов из одной формы представления в другую.
По способу функционирования логические (цифровые) устройства (и их узлы) делятся на два класса: комбинационные цифровые устройства (КЦУ) и последовательностные цифровые устройства (ПЦУ). В КЦУ (цифровых автоматах без памяти) каждый символ на выходе определяется комбинацией символов на входах в текущий момент времени и не зависит от того, какие символы ранее действовали на этих входах, т.е. КЦУ не обладают памятью. В ПЦУ (цифровых автоматах с памятью) выходной сигнал определяется не только набором символов на входах в текущий момент времени, но и внутренним состоянием устройства, которое зависит от предыдущих значений символов на входах, т.е. ПЦУ обладают памятью.
Способы задания логических функций
Для задания логических функций используют два способа: табличный и аналитический.
При табличном
способе
строится таблица
истинности,
в которой приводятся все возможные
значения наборов аргументов и значения
логической функции, которые она принимает
на каждом наборе. Число наборов аргументов
N,
т.е. число строк в таблице истинности,
определяется по формуле
где n
– число аргументов. Например, таблица
истинности для логических функций
одного аргумента приведена в таблице
3. Существует всего четыре функции одного
аргумента.
Таблица 3 – Таблица истинности для элементарных логических функций одного аргумента
Аргумент X |
Логические функции |
|||
|
|
|
|
|
0 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
0 |
1 |
При n = 2
число наборов значений аргументов равно
а число функций
Таблица истинности для логических
функций двух аргументов представлена
в таблице 4.
Таблица 4 – Таблица истинности для элементарных логических функций двух аргументов
Аргументы |
Функции |
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
При аналитическом способе логическая функция записывается в форме логического выражения, показывающего, какие логические операции над аргументами функции и в какой последовательности должны выполняться, например:
(6)
Таблица истинности наиболее наглядно описывает функционирование некоторого логического устройства, но, чтобы построить логическую схему устройства, необходимо логическую функцию задать аналитическим способом.
