- •Цифровые и микропроцессорные устройства
- •Часть 1 Основы цифровой техники
- •27 Мая 2010 г., протокол № 9
- •Системы счисления. Основные понятия. Выбор системы счисления для цифровых устройств
- •Перевод чисел из одной позиционной системы счисления в другую
- •Представление двоичных чисел в формах с фиксированной и плавающей точкой
- •Способы кодирования двоичных чисел
- •Арифметические операции над двоичными числами с фиксированной точкой
- •Особенности арифметических операций над двоичными числами с плавающей точкой
- •Сложение двоично-десятичных чисел
- •Символьные коды
- •Структурные единицы и форматы цифровых данных
- •Понятие о логических функциях, логических элементах и логических устройствах
- •Классификация логических устройств
- •Способы задания логических функций
- •Элементарные логические функции одного аргумента
- •Элементарные логические функции двух аргументов
- •Основные законы и тождества алгебры логики
- •Понятие базиса и минимального базиса
- •Преобразование логических функций из основного базиса в неосновные
- •Общие сведения об элементной базе цифровой техники
- •Классификация цифровых интегральных схем
- •Обозначения цифровых интегральных схем
- •Основные статические и динамические параметры логических элементов
- •Типы выходных каскадов цифровых элементов
- •Логический выход
- •Выход с тремя состояниями
- •Выход с открытым коллектором (стоком)
- •Построение узлов цифровых устройств на стандартных микросхемах
- •Схемотехника входных цепей элементов кмоп и режимы временно разомкнутых входов
- •Этапы синтеза комбинационных цифровых устройств
- •Канонические формы представления логических функций
- •Исходные положения к минимизации
- •Этапы минимизации
- •Табличный метод минимизации
- •Литература
- •Содержание
- •Цифровые и микропроцессорные устройства
- •Часть 1 Основы цифровой техники
- •220114, Минск, ф.Скорины, 8/2
Исходные положения к минимизации
Как известно, основные параметры логической схемы, например: количество необходимого оборудования (а значит, стоимость) и быстродействие, можно определить по виду логической функции до построения схемы. Это приводит к необходимости оптимизации функции, т.е. к необходимости получения ее оптимального вида по выбранному критерию. В общем случае речь должна идти об оптимизации функции по таким критериям, как быстродействие, надежность (достижение их максимума), количество необходимого оборудования, габариты, энергопотребление, стоимость (достижение их минимума) и т.д. Указанные критерии противоречивы. Например, увеличение быстродействия, как правило, достигается за счет организации параллельной работы данного устройства, но это ведет к увеличению оборудования, а значит, к уменьшению надежности и увеличению стоимости. Поэтому на практике обычно решается частная задача оптимизации по одному из критериев. Чаще всего это делается по минимуму необходимого оборудования, так как при этом, как правило, автоматически решаются задачи получения минимальных габаритов, массы, энергопотребления, стоимости. Такая частная задача оптимизации логической функции носит название минимизации, а форма функции, полученная в результате ее решения, называется минимальной (МДНФ или МКНФ).
Существуют различные методы минимизации, но наиболее широко используются три. К ним относятся:
расчетный;
расчетно-табличный (метод Квайна-Мак-Класки);
табличный (метод Вейча-Карно).
Исходной формой логической функции для любого из этих методов является СДНФ или СКНФ.
Этапы минимизации
При любом методе минимизация выполняется в три этапа.
Первый этап. Осуществляется переход от совершенной формы логической функции (СДНФ или СКНФ) к сокращенной путем выполнения всех возможных склеиваний друг с другом сначала соседних конституент, а затем производных членов более низкого ранга. Таким образом, под сокращенной будем понимать нормальную дизъюнктивную (или конъюнктивную) нормальную форму, членами которой служат только изолированные (несклеивающиеся) элементарные конъюнкции (или дизъюнкции), называемые простыми импликантами (или имплицентами). Например:
(40)
Возможен случай, когда в совершенной форме логической функции нет соседних конституент, тогда сокращенная форма логической функции будет тождественно равна совершенной.
Второй этап. Выполняется переход от сокращенной нормальной формы логической функции к тупиковой. Тупиковой будем называть такую нормальную дизъюнктивную (или конъюнктивную) форму функции, членами которой являются простые импликанты (или имплиценты), среди которых нет ни одной лишней. Термин «лишняя» импликанта или имплицента, означает, что ее удаление не влияет на значение истинности функции. Возможны случаи, когда в сокращенной форме логической фукнции не оказывается лишних членов. Тогда тупиковая форма функции будет тождественно равна сокращенной. Название «тупиковая форма» показывает, что дальнейшая минимизация в рамках нормальных форм уже невозможна.
Третий этап. Осуществляется переход от тупиковой формы функции (минимальной среди нормальных форм) к ее минимальной форме. Этот этап, называемый факторизацией, не является регулярным, как два предыдущих, и требует определенной интуиции и опыта разработчика. Здесь подразумевается поиск возможностей упрощения функции методом проб и ошибок. Для уменьшения числа операций отрицания следует применять закон инверсии, а для уменьшения числа конъюнкций и дизъюнкций – распределительные законы. На этом же этапе решается и вторая задача – приведение логических функций к виду, удобному для применения стандартных логических элементов заданного базиса, которые имеют определенные ограничения по количеству входов и по величине допустимой нагрузки.
Различные методы минимизации отличаются друг от друга путями и средствами практической реализации того или иного этапа. Для минимизации сложных логических функций используются ЭВМ.
