Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект лекций ЦиМПУ, часть 1.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
17.69 Mб
Скачать

Перевод чисел из одной позиционной системы счисления в другую

Существует два основных метода перевода чисел из одной СС в другую: табличный и расчетный.

Табличный метод основан на составлении специальных таблиц соответствия чисел в различных СС, примером такой таблицы является таблица 1. Такие таблицы удобны на начальном этапе ознакомления с новой СС, но являются громоздкими.

Расчетный метод более универсален, но применим только к позиционным СС. При использовании расчетного метода могут встретиться три случая: перевод целых чисел, перевод правильных дробей, перевод неправильных дробей.

Правило перевода целых чисел из одной позиционной СС в другую. Исходное целое число необходимо последовательно делить на основание новой СС до тех пор, пока не получится частное, у которого целая часть равна нулю. Деление необходимо производить в исходной СС. Результат перевода записывается из остатков от последовательного деления, причем последний остаток будет старшим разрядом числа в новой СС.

Процесс деления сначала самого числа, а затем целых частей получаемых частных на один и тот же делитель называется последовательным делением.

Пример 1. Переведем десятичное число X = 29 в двоичную и шестнадцатеричную СС:

Стрелкой показан порядок записи числа в новой СС.

Ответ:

Правило перевода правильных дробей из одной позиционной СС в другую. Исходную правильную дробь необходимо последовательно умножать на основание новой СС до тех пор, пока в новой дроби не будет нужного количества цифр, которое определяется требуемой точностью перевода. Результат перевода записывается из целых частей произведений, получающихся при последовательном умножении, причем первая целая часть будет старшим разрядом результата. Умножение выполняется в исходной СС.

Процесс умножения сначала самой исходной дроби, а затем дробных частей получаемых произведений на один и тот же множитель называется последовательным умножением.

Пример 2. Переведем в двоичную и шестнадцатеричную СС правильную дробь с точностью четыре знака после запятой:

Стрелкой показан порядок записи правильной дроби в новой СС.

Ответ:

При переводе неправильных дробей отдельно преобразуют целую и дробную части по соответствующим правилам, приведенным выше, а затем записывают результаты перевода через запятую в новой СС.

Пример 3. Переведем неправильную дробь X = 29,375(10) в двоичную и шестнадцатеричную СС с точностью четыре знака после запятой:

Рассмотренный расчетный метод удобен в том случае, если исходной является десятичная СС. Если же перевод осуществляется из недесятичной СС, то вычисления затруднительны. В этом случае для преобразования чисел можно использовать формулу (1), причем расчеты ведутся в новой СС.

Пример 4. Переведем в десятичную СС двоичное число X = 11101,011:

Таким образом, для перевода десятичных чисел в другую позиционную СС используется метод последовательного деления-умножения, а при обратном переводе исходное число записывается в виде полинома и выполняются необходимые расчеты.