Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект лекций ЦиМПУ, часть 1.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
17.69 Mб
Скачать

Типы выходных каскадов цифровых элементов

Цифровые элементы (логические, запоминающие, буферные) могут иметь выходы следующих типов:

  • логические;

  • с третьим или Z-состоянием;

  • с открытым коллектором (стоком);

  • с открытым эмиттером (истоком).

Наличие четырех типов выходов объясняется различными условиями работы элементов в логических цепях, магистрально-модульных системах и т.д. Выход с открытым эмиттером (истоком) характерен для элементов ЭСЛ (эмиттерно-связанная логика), которые применялись для реализации цифровых устройств сверхвысокого быстродействия [4]. Их основным недостатком является большая энергия переключения, поэтому в настоящее время элементы ЭСЛ применяются редко, поскольку современные элементы схемотехники Би-КМОП обладают лучшим сочетанием параметров. Исходя из вышесказанного, рассмотрим более подробно первые три типа выходов.

Логический выход

Логический выход формирует два уровня выходного напряжения ( и ). Выходное сопротивление логического выхода стремятся сделать малым для увеличения выходных токов с целью увеличения скорости перезаряда емкостных нагрузок, т.е. для получения высокого быстродействия элемента. Такой тип выхода имеют большинство логических элементов, используемых в КЦУ.

Схемы логических выходов элементов схемотехники ТТЛШ, КМОП и Би-КМОП подобны двухтактным каскадом усилителей: в них оба фронта выходного напряжения формируются с участием активных транзисторов, работающих противофазно, что обеспечивает малые выходные сопротивления при любом направлении переключения выхода (рисунок 16).

Рисунок 16 – Схемы логических выходов цифровых элементов схемотехники ТТЛШ (а) и КМОП (б)

В схеме на рисунке 16, а использованы транзисторы Шоттки. За счет этого уменьшается энергия переключения. Схема выхода элементов схемотехники Би-КМОП отличается от схемы на рисунке 16, а тем, что используются обычные биполярные транзисторы.

Первая особенность таких выходов состоит в том, что их нельзя соединять параллельно по двум причинам. Во-первых, это создает логическую неопределенность, так как в точке соединения выхода, формирующего логическую единицу, и выхода, формирующего логический нуль, не будет стандартного уровня. Во-вторых, при соединении выходов, находящихся в различных логических состояниях, возникает их «противоборство». Вследствие малых выходных сопротивлений возникает уравнительный ток большой величины, что может вывести из строя элементы выходных цепей.

Вторая особенность логического выхода двухтактного типа связана с протеканием через оба транзистора коротких импульсов тока при переключении из одного логического состояния в другое. Эти токи протекают от источника питания на корпус и называются сквозными. В статических состояниях таких токов нет, так как один из транзисторов всегда заперт. При переходных процессах возникает кратковременная ситуация, в которой оба транзистора одновременно открыты, что и порождает короткий импульс сквозного тока значительной величины (рисунок 17) и приводит к увеличению потребляемой мощности.

Рисунок 17 – Временная диаграмма тока, потребляемого цифровым элементом при переключении из одного логического состояния в другое

Следует отметить, что импульсные токи возникают в цепях питания цифровых элементов не только из-за сквозных токов, но и вследствие перезаряда емкостей. Поэтому в цепях питания цифровых элементов возникают импульсные токовые помехи. Для борьбы с ними требуется «хорошая земля» и фильтрация напряжения питания.