- •Цифровые и микропроцессорные устройства
- •Часть 1 Основы цифровой техники
- •27 Мая 2010 г., протокол № 9
- •Системы счисления. Основные понятия. Выбор системы счисления для цифровых устройств
- •Перевод чисел из одной позиционной системы счисления в другую
- •Представление двоичных чисел в формах с фиксированной и плавающей точкой
- •Способы кодирования двоичных чисел
- •Арифметические операции над двоичными числами с фиксированной точкой
- •Особенности арифметических операций над двоичными числами с плавающей точкой
- •Сложение двоично-десятичных чисел
- •Символьные коды
- •Структурные единицы и форматы цифровых данных
- •Понятие о логических функциях, логических элементах и логических устройствах
- •Классификация логических устройств
- •Способы задания логических функций
- •Элементарные логические функции одного аргумента
- •Элементарные логические функции двух аргументов
- •Основные законы и тождества алгебры логики
- •Понятие базиса и минимального базиса
- •Преобразование логических функций из основного базиса в неосновные
- •Общие сведения об элементной базе цифровой техники
- •Классификация цифровых интегральных схем
- •Обозначения цифровых интегральных схем
- •Основные статические и динамические параметры логических элементов
- •Типы выходных каскадов цифровых элементов
- •Логический выход
- •Выход с тремя состояниями
- •Выход с открытым коллектором (стоком)
- •Построение узлов цифровых устройств на стандартных микросхемах
- •Схемотехника входных цепей элементов кмоп и режимы временно разомкнутых входов
- •Этапы синтеза комбинационных цифровых устройств
- •Канонические формы представления логических функций
- •Исходные положения к минимизации
- •Этапы минимизации
- •Табличный метод минимизации
- •Литература
- •Содержание
- •Цифровые и микропроцессорные устройства
- •Часть 1 Основы цифровой техники
- •220114, Минск, ф.Скорины, 8/2
Типы выходных каскадов цифровых элементов
Цифровые элементы (логические, запоминающие, буферные) могут иметь выходы следующих типов:
логические;
с третьим или Z-состоянием;
с открытым коллектором (стоком);
с открытым эмиттером (истоком).
Наличие четырех типов выходов объясняется различными условиями работы элементов в логических цепях, магистрально-модульных системах и т.д. Выход с открытым эмиттером (истоком) характерен для элементов ЭСЛ (эмиттерно-связанная логика), которые применялись для реализации цифровых устройств сверхвысокого быстродействия [4]. Их основным недостатком является большая энергия переключения, поэтому в настоящее время элементы ЭСЛ применяются редко, поскольку современные элементы схемотехники Би-КМОП обладают лучшим сочетанием параметров. Исходя из вышесказанного, рассмотрим более подробно первые три типа выходов.
Логический выход
Логический
выход
формирует два уровня выходного напряжения
(
и
).
Выходное сопротивление логического
выхода стремятся сделать малым для
увеличения выходных токов с целью
увеличения скорости перезаряда емкостных
нагрузок, т.е. для получения высокого
быстродействия элемента. Такой тип
выхода имеют большинство логических
элементов, используемых в КЦУ.
Схемы логических выходов элементов схемотехники ТТЛШ, КМОП и Би-КМОП подобны двухтактным каскадом усилителей: в них оба фронта выходного напряжения формируются с участием активных транзисторов, работающих противофазно, что обеспечивает малые выходные сопротивления при любом направлении переключения выхода (рисунок 16).
Рисунок 16 – Схемы логических выходов цифровых элементов схемотехники ТТЛШ (а) и КМОП (б)
В схеме на рисунке 16, а использованы транзисторы Шоттки. За счет этого уменьшается энергия переключения. Схема выхода элементов схемотехники Би-КМОП отличается от схемы на рисунке 16, а тем, что используются обычные биполярные транзисторы.
Первая особенность таких выходов состоит в том, что их нельзя соединять параллельно по двум причинам. Во-первых, это создает логическую неопределенность, так как в точке соединения выхода, формирующего логическую единицу, и выхода, формирующего логический нуль, не будет стандартного уровня. Во-вторых, при соединении выходов, находящихся в различных логических состояниях, возникает их «противоборство». Вследствие малых выходных сопротивлений возникает уравнительный ток большой величины, что может вывести из строя элементы выходных цепей.
Вторая особенность логического выхода двухтактного типа связана с протеканием через оба транзистора коротких импульсов тока при переключении из одного логического состояния в другое. Эти токи протекают от источника питания на корпус и называются сквозными. В статических состояниях таких токов нет, так как один из транзисторов всегда заперт. При переходных процессах возникает кратковременная ситуация, в которой оба транзистора одновременно открыты, что и порождает короткий импульс сквозного тока значительной величины (рисунок 17) и приводит к увеличению потребляемой мощности.
Рисунок 17 – Временная диаграмма тока, потребляемого цифровым элементом при переключении из одного логического состояния в другое
Следует отметить, что импульсные токи возникают в цепях питания цифровых элементов не только из-за сквозных токов, но и вследствие перезаряда емкостей. Поэтому в цепях питания цифровых элементов возникают импульсные токовые помехи. Для борьбы с ними требуется «хорошая земля» и фильтрация напряжения питания.
