Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект лекций ЦиМПУ, часть 1.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
17.69 Mб
Скачать

Понятие базиса и минимального базиса

Элементарные логические функции двух аргументов могут быть реализованы простейшими логическими элементами, УГО которых представлены в таблице 5. Для реализации сложных логических функций их сначала следует представить элементарными, которые затем последовательно выполнять с помощью простейших логических элементов. Например, функция может быть реализована с помощью логической схемы на рисунке 5.

Рисунок 5 – Логическая схема устройства

Имея логические элементы, выполняющие элементарные функции можно реализовать любую сложную логическую функцию. Такая система функций называется полной системой, или базисом. Но это условие не является необходимым, т.е. при синтезе логических устройств можно ограничиться меньшим набором элементарных логических функций, взятых из

Таким образом, под базисом понимают ограниченный набор элементарных логических функций, с помощью которого можно реализовать логическую функцию любой сложности.

Последовательно исключая из базиса функции, можно получить минимальный базис. Под минимальным базисом понимают такой набор элементарных логических функций, исключение из которого любой функции превращает полную систему в неполную.

Возможны различные базисы и минимальные базисы, отличающиеся друг от друга числом входящих в них функций и видом этих функций. Выбор базиса связан с тем, насколько просто, удобно и экономично можно выполнить логические элементы, реализующие входящие в базис функции, и в целом все логическое устройство.

Один из базисов называется основным. Это базис И, ИЛИ, НЕ, состоящий из трех элементарных логических функций. Основным этот базис называется, потому что при переходе от табличной формы задания к аналитической логическая функция вначале всегда записывается в базисе И, ИЛИ, НЕ, а только затем может быть преобразована в любой другой неосновной базис.

Базис И, ИЛИ, НЕ не является минимальным. Из этой совокупности функций можно исключить функцию И либо функцию ИЛИ. Избыточность основного базиса позволяет упростить схемы логических устройств. Например, если исключить функцию И, то логическую операцию И можно выразить через оставшиеся операции ИЛИ и НЕ. Для этого применим закон двойного отрицания и правило де Моргана:

(23)

Хотя логическую операцию И можно выразить через операции ИЛИ и НЕ, но это сложно (требуется выполнение трех логических операций НЕ и одной операции ИЛИ), поэтому на практике используется неминимальный основной базис.

Рассмотрим некоторые другие базисы. При этом выбранный набор логических функций будет удовлетворять свойствам базиса, если с его помощью можно будет выразить функции И и НЕ (либо функции ИЛИ и НЕ).

Базис образует функция И-НЕ. Действительно, логические операции И и НЕ можно следующим образом выразить через операцию И-НЕ:

(24)

(25)

Таким образом, из логических функций (24) и (25) следует, что для реализации логического элемента НЕ требуется один логический элемент И-НЕ с объединенными входами, а для реализации логического элемента И – два логических И-НЕ (рисунок 6).

Рисунок 6 – Реализация на основе логических элементов И‑НЕ логических элементов НЕ (а) и И (б)

Следовательно, для построения логического устройства произвольной сложности достаточно иметь логические элементы И-НЕ.

Базис образует функция ИЛИ-НЕ. Докажем, что логические операции НЕ и ИЛИ выражаются через операцию ИЛИ-НЕ:

(26)

(27)

Из логических функций (26) и (27) следует, что для реализации логического элемента НЕ требуется один логический элемент ИЛИ-НЕ, а для реализации логического элемента ИЛИ – два логических элемента ИЛИ-НЕ (рисунок 7).

Рисунок 7 – Реализация на основе логических элементов ИЛИ‑НЕ логических элементов НЕ (а) и ИЛИ (б)

Таким образом, используя однотипные логические элементы, реализующие операцию ИЛИ-НЕ, можно построить логическое устройство любой сложности.

В настоящее время базис И, ИЛИ, НЕ обычно используется на начальной стадии проектирования для построения логической схемы устройства. Для реализации устройств чаще всего используются неосновные базисы И-НЕ либо ИЛИ-НЕ. Логические элементы этих базисов широко выпускаются промышленностью в интегральном исполнении.