Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект лекций ЦиМПУ, часть 1.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
17.69 Mб
Скачать

Основные законы и тождества алгебры логики

Логические функции могут быть представлены в различных формах. Эквивалентные преобразования логических функций из одной формы в другую основаны на законах и тождествах алгебры логики. К ним относятся:

  • Свойства конъюнкции, дизъюнкции и инверсии:

(8)

(9)

если то (10)

Справедливость этих выражений может быть доказана с помощью таблиц истинности.

Второе свойство инверсии называется законом двойного отрицания.

  • Переместительный (коммутативный) закон справедлив как для дизъюнкции, так и для конъюнкции. Например, для двух аргументов можно записать:

(11)

(12)

Справедливость выражений (11) и (12) можно доказать подстановкой в них различных значений и Закон будет справедлив при любом числе аргументов.

  • Сочетательный (ассоциативный) закон также является симметричным, т.е. справедлив и для дизъюнкции, и для конъюнкции. При логическом сложении (умножении) нескольких аргументов любую группу слагаемых (сомножителей) можно заменить их логической суммой (логическим произведением). Для трех аргументов можно записать:

(13)

(14)

  • Распределительный (дистрибутивный) закон в алгебре логики (в отличие от обычной алгебры) также является симметричным относительно сложения и умножения, т.е. справедливы его разновидности для логического умножения относительно логического сложения (распределительный закон первого рода) и для логического сложения относительно логического умножения (распределительный закон второго рода). Для трех аргументов распределительный закон первого рода можно записать:

(15)

Формула (15) справедлива и для большего числа слагаемых в скобках. Для доказательства справедливости выражения (15) следует рассмотреть условия обращения в 0 или в 1 левой и правой частей.

Для трех аргументов в соответствии с распределительным законом второго рода можно записать:

(16)

Справедливость формулы (16) можно доказать путем непосредственных преобразований. Для этого преобразуем ее правую часть в соответствии с распределительным законом первого рода.

В результате преобразований мы пришли к левой части формулы (16), что и требовалось доказать.

  • Закон инверсии (правило де Моргана), как и все предыдущие, симметричен относительно логических сложения и умножения.

Отрицание логической суммы нескольких аргументов равно логическому произведению отрицаний этих же аргументов:

(17)

Отрицание логического произведения нескольких аргументов равно логической сумме отрицаний этих же аргументов:

(18)

Доказательство справедливости выражений (17) и (18) не представляет трудностей, поскольку левые и правые части равны 0 либо 1 при одинаковых условиях.

  • Правило старшинства логических операций является следствием закона инверсии и устанавливает очередность выполнения логических операций в логических функциях, т.е. логические операции обладают приоритетом и выполняются в следующей очередности:

  • одиночное отрицание;

  • конъюнкция;

  • дизъюнкция, сложение по модулю 2 и т.д.;

  • общее отрицание.

Всякое отклонение от этого порядка должно быть обозначено скобками.

  • Правило склеивания обеспечивает упрощение логических выражений и является следствием распределительных законов. Для двух аргументов можно записать:

(19)

(20)

Докажем справедливость выражений (19) и (20):

Наименование правила удачно характеризует операцию замены соседних логических сумм (произведений) их общей частью, т.е. два исходных выражения как бы «склеиваются» в одно.

  • Правило поглощения также позволяет упрощать логические выражения и является следствием распределительных законов. Для двух аргументов можно записать:

(21)

(22)

Докажем справедливость выражений (21) и (22):

Название рассмотренного правила удачно характеризует операцию замены двух членов логического выражения одним из них.