
- •1. Особенности приводов главного движения с двигателями постоянного тока на примере токарного станка с чпу 16к20ф3
- •Низкоскоростные схемы шпиндельных узлов
- •3. Средне- и высокоскоростные схемы шпиндельных узлов
- •4. Приводы подач со ступенчатым регулированием.
- •5. Приводы подач станков с чпу, их структура, применяемые на примере токарного станка с чпу 16к20ф3
- •6. Тяговые устройства (приводов подач). Передача винт-гайка качения.
- •Направляющие скольжения
- •8. Направляющие качения
- •9. Промышленные роботы
- •Пути повышения производительности, точности, надежности, гибкости и степени автоматизации станков.
- •11. Принципы построения однопозиционных автоматов (ал).
- •12. Принципы проектирования многопозиционных автоматов ( aл).
- •16. Конструирование шпиндельных узлов. Факторы определяющие их конструктивное оформление.
- •21 . Элементы объемного гидропривода объемные гидродвигатели
- •22 Гидроаппаратура распределения и управления
- •23.Системы управления скоростью.
- •Гидравлические усилители. Пример.
- •25. Следящие гидроприводы. Примеры.
- •26 .Требований к установке и монтажу станков Виды виброизоляций
- •27. Ремонт металлорежущих станков. Основные положения системы ПпР. Виды ремонтов и технического обслуживания.
- •36 Назначение и классификация систем чпу
- •37 Системы управления с распред. Валами и их классификации.
- •38 Системы циклового программного управления
- •39. Классификация математических моделей. Примеры.
- •40. Состав и струкура сапр. Принципы и особенности сапр.
- •41 Информационноe обеспечения сапр
- •42. Современные сапр cad / cam / cae.
- •43. Требования безопасности станочного оборудования
- •45 Технические и организационные мероприятия по обеспечению электробезопасноти.
- •46 Электробезопасность .Защитные средства.
- •47 Безопасность эксплуатации грузоподъемных механизмов
- •48 Безопасность эксплуатации сосудов под давлением
8. Направляющие качения
Для направляющих качения характерны низкая сила трения (10…40 Н) и ее независимость от скорости рабочего органа, благодаря чему достигаются равномерность медленных движений, снижение мощности привода подачи и высокая точность позиционирования (зона нечувствительности направляющих качения по сравнению с парой трения чугун-чугун снижается в 10-12 раз). Значительно меньшая, чем в направляющих с гидростатической смазкой, переориентация рабочего органа обусловливается только податливостью направляющих, которая значительно ниже податливости направляющих других типов. Для направляющих качения характерна высокая долговечность, так как при хорошей защите их износ на порядок ниже, чем износ направляющих полужидкостного трения. К недостаткам направляющих качения относятся низкое демпфирование в направлении движения при малых скоростях движения и сравнительно высокая стоимость.
Направляющие качения применяют в обрабатывающих центрах сверлильно-фрезерно-расточной группы, станках с ЧПУ высокой точности малых и средних размеров, круглошлифовальных, бесцентрово-шлифовальных станках.
1 НАПРАВЛЯЮЩИЕ БЕЗ ЦИРКУЛЯЦИИ ТЕЛ КАЧЕНИЯ
В конструкцию направляющих входят закаленные планки, прикрепляемые к столу и станине, тела качения (шарики или ролики), сепараторы, устройства для создания предварительного натяга и для защиты направляющих от загрязнений.
Направляющие без циркуляции тел качения применяются при небольшой длине хода узла (до 1 м).
Направляющие бывают незамкнутыми и замкнутыми. Отрыву подвижного узла, установленного на незамкнутых направляющих (рис. 12.1, а, б), препятствуют его сила тяжести и вертикальная составляющая силы резания. Незамкнутые направляющие качения могут быть только горизонтальными. Замкнутые направляющие (рис. 12.1, в-е) сложнее и дороже незамкнутых, однако благодаря создаваемому натягу обладают высокой точностью и жесткостью. Они могут быть не только горизонтальными, но и вертикальными, и наклонными.
В конструкциях направляющих качения используются поверхности тех же форм, что и в направляющих скольжения. Применение шариков или роликов дает большое число их исполнений.
Шариковые направляющие со встречными призмами (рис. 12.1, в) отличаются простотой конструкции, однако не могут воспринимать больших нагрузок и легко повреждаются в результате перетяжки элементов, регулирующих натяг. Направляющие типа "ласточкин хвост" (рис. 12.1, г) по сравнению с другими имеют более высокую жесткость, хорошо регулируются, но отличаются сложностью в изготовлении; применяются при малой и средней массе подвижного узла. Прямоугольные роликовые направляющие (рис. 12.1,д) просты по конструкции и в изготовлении, имеют высокую жесткость в горизонтальной плоскости, но недостаточную при работе планок на отрыв. Недостатком их являются и большие габариты. Применяются при средней массе подвижного узла и большом опрокидывающем моменте.
Ролики в призматических направляющих (рад. 12.1, е) из-за малого диаметра могут проскальзывать, что приводит к повышенной силе трения. На работоспособности направляющих сильно сказываются погрешности углов призм.
Шариковые или роликовые направляющие выбирают в зависимости от нагрузки. Для роликовых направляющих допускаемая нагрузка в 20-30 раз больше, чем для шариковых. При больших нагрузках используются направляющие в виде накладных планок из закаленной цементируемой стали 20Х, а при малых— как стальные, так и чугунные.
В качестве сепараторов применяются штампованные стальные пластины с прямоугольными (рис. 12.2) или круглыми гнездами, стальные составные пластины, а также роликовые цепи.
Направляющие смазываются пластичным смазочным материалом или масляным туманом. Для защиты от загрязнений применяются лабиринтные уплотнения, расположенные вдоль них (рис. 12.3, а, б. Со стороны торцов к столу прикрепляют щитки или стальные ленты (рис. 12.3, в).
2 НАПРАВЛЯЮЩИЕ С ЦИРКУЛЯЦИЕЙ ТЕЛ КАЧЕНИЯ
Направляющие, оснащенные комплектными элементами в виде роликовых опор, применяются в станках с ЧПУ, узлы которых при значительных нагрузках имеют большой ход.
Роликовая опора Р88 включает направляющую (корпус) 1 (рис. 12.5), циркулирующие вокруг нее ролики 2, препятствующие выпаданию роликов обоймы 4, винты 5 и штифты 6 для крепления обоймы к направляющей 1, а также винты 3 и штифты 7 для крепления опоры к подвижному узлу станка. Стандартные роликовые опоры бывают нормальной Р88, узкой Р88У и широкой Р88Ш серий.
Незамкнутые направляющие с роликовыми опорами (рис. 12.6, а) применяются только для горизонтального перемещения и не могут воспринимать больших опрокидывающих моментов. Замкнутые направляющие (рис. 12.6, б) сложнее незамкнутых и могут быть применены для горизонтального и вертикального движений. Наиболее технологичны прямоугольные направляющие. Чтобы исключить изгибные деформации, замкнутые направляющие монтируют так, чтобы каждая роликовая опора взаимодействовала с противостоящей опорой. Другими словами, роликовые опоры применяются парами. Например, в конструкции на рис 12.6, б опоры 1 и 2 воспринимают силу тяжести стола и вертикальные рабочие нагрузки, опоры 3 и 5 препятствуют отрыву стола, опоры 4 и 6 создают направление стола в горизонтальной плоскости. С помощью предварительного натяга повышают жесткость направляющих и не допускают отрыва подвижного узла под действием разных по направлению и значению нагрузок. При создании натяга пружинами и винтом (рис. 12.7) достигаются наилучшая самоустановка опоры и минимальное сопротивление движению, но жесткость почти в 3 раза ниже по сравнению с регулировкой клиньями.