Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Первоисточники / Мангейм Д., Рич. Политология-методы исследования.doc
Скачиваний:
182
Добавлен:
15.06.2014
Размер:
2.97 Mб
Скачать

Определение партийности на основании партийной принадлежности отца (2)

Партийность отца

Партийность респондента

Демократ

Республиканец

Независимый

Всего

Демократ Республиканец Независимый Всего

50

30

20

60 30 30 100

Эта таблица напоминает табл. 15.1 тем, что категории переменных те же самые, но табл. 15.2 не содержит никаких распределений в своих графах. Определение χ2 начинается с того, что мы задаем себе вопрос: какое значение мы ожидаем в каждой графе при [c.420] имеющихся итоговых распределениях, если между переменными нет связи? Для 60 респондентов, чьи отцы были демократами, например, мы можем ожидать, что половина (50/100) будут демократами, около трети (30/100) будут республиканцами и один из 5 (20/100) – независимым, или, другими словами, 30 демократов, 18 республиканцев и 12 независимых.

Точно так же мы можем прикинуть ожидаемые значения для тех, у кого отцы были республиканцами или независимыми. Эти ожидаемые значения собраны в табл. 15.3.

Таблица 15.3.

Определение партийности на основании партийной принадлежности отца (3)

Партийность отца

Партийность респондента

Демократ

Республиканец

Независимый

Всего

Демократ Республиканец Независимый Всего

30 15 5 50

18 9 3 30

12 6 2 20

60 30 30 100

Тогда встает вопрос: действительно ли значения табл. 15.1 настолько отличаются от тех значений, которые можно предположить в табл. 15.3, что мы можем быть решительно уверены в надежности наших результатов? Хи-квадрат и является тем инструментом, который посредством сравнения двух таблиц даст ответ на наш вопрос. Уравнение для χ2 выглядит следующим образом:

,

где f0 – частота, наблюдаемая в каждой графе (см. табл. 15.1); fe – частота, ожидаемая в каждой графе (см. табл. 15.3).

Подсчитывается χ2 путем внесения значений в каждую графу табл. 15.4. [c.421]

Таблица 15.4.

Значения, используемые для получения χ2

f0

fe

f0 –fe

(f0 –fe)2

(f0 –fe)2 fe

45 5 10 2 23 5 3 2 5

30 18 12 15 9 6 5 3 2

15 – 3 –2 –13 14 –1 –2 –1 3

225 169 4 169 196 1 4 1 9

7,5 9,39 0,33 11,27 21,78 0,17 0,8 0,33 4,50

Порядок граф таблицы не имеет значения, но f0 из табл. 15.1 и fe из табл. 15.3 в каждой определенной строке должны относиться к одному и тому же случаю. Причина того, что разность между f0 и fe сначала возводится в квадрат и лишь потом делится на fe, та же, что в случае колебаний вокруг среднего геометрического при определении стандартного отклонения. Хи-квадрат определяется путем сложения всех цифр в последней колонке. В нашем примере он получает значение 56,07.

Прежде чем мы интерпретируем эту цифру, нам необходимо сделать еще одно вычисление – подсчитать так называемые степени свободы(degrees of freedom –df). Степени свободы в таблице – это количество ячеек таблицы, которые могут быть заполнены цифрами, прежде чем содержание всех остальных ячеек станет фиксированным и постоянным. Формула для определения степеней свободы в любой определенной таблице такова:

df = (r – 1) (c – 1),

где r = количество категорий переменной в ряду; с = количество категорий переменной в колонке. Например, df = (3 – 1) (3 – 1) = 4.

Теперь мы готовы оценить статистическую значимость наших данных. Таблица А.4 в приложении содержит [c.422] значимые величины χ2 для различных степеней свободы на уровнях 0,001; 0,01; 0,05. Если значение χ2, которое мы подсчитали (56,07), превышает то, что указано в таблице на любом из этих уровней для таблицы с определенными степенями свободы (4), то можно сказать, что те взаимосвязи, которые мы наблюдали, на данном уровне статистически значимы. В настоящем случае, например, для того чтобы связь была значимой на уровне 0,001 (т.е. если мы допускаем, что наблюдаемая связь отражает характеристики всей совокупности, то мы рискуем ошибиться один раз из 1000), наблюдаемый χ2 должен превышать 18,467. Если это так, то мы можем быть абсолютно уверены в своих результатах. [c.423]