
- •Общие сведения об этм
- •Виды связей молекул веществ
- •Строение и дефекты твердых тел
- •Классификация веществ по электрическим свойствам
- •Диэлектрики
- •Поляризация диэлектриков. Диэлектрик в электрическом поле
- •Поляризация диэлектриков. Относительная диэлектрическая проницаемость
- •Основные виды поляризации диэлектриков
- •Дипольно-релаксационная поляризация
- •Классификация диэлектриков по виду поляризации
- •Электропроводность диэлектриков
- •Электропроводность газов
- •Электропроводность жидкостей
- •Электропроводность твердых диэлектриков
- •Поверхностная электропроводность твердых диэлектриков
- •Диэлектрические потери
- •Виды диэлектрических потерь в электроизоляционых материалах
- •Диэлектрические потери, обусловленные поляризацией
- •Диэлектрические потери, связанные со сквозной электропроводностью
- •Ионизационные диэлектрические потери
- •Диэлектрические потери, обусловленные неоднородностью структуры
- •Диэлектрические потери в газах
- •Диэлектрические потери в жидких диэлектриках
- •Диэлектрические потери в твердых диэлектриках
- •Пробой диэлектриков
- •Общая характеристика явления пробоя
- •Пробой газов
- •Пробой газов в однородном электрическом поле
- •Пробой газов в неоднородном электрическом поле
- •Пробой жидких диэлектриков
- •Пробой твердых диэлектриков
- •Влажностные свойства диэлектриков
- •Влажность изоляционных материалов
- •Влагопроницаемость изоляционных материалов
- •Механические свойства диэлектриков
- •Хрупкость изоляционных материалов
- •Вязкость изоляционных материалов
- •Параметр (число) Рейнольдса является безразмерным и определяется отношением:
- •Существуют три режима течения жидкости или газа:
- •Нагревостойкость диэлектриков. Классы нагревостойкости
- •Холодостойкость изоляционных материалов
- •Теплопроводность изоляционных материалов
- •Тепловое расширение изоляционных материалов
- •Химические свойства диэлектриков
- •Воздействие излучений высокой энергии на изоляционные материалы
- •Проводниковые материалы
- •Классификация проводниковых материалов
- •Электропроводность металлов и сплавов металлов. Температурный коэффициент удельного сопротивления металлов и сплавов металлов
- •Теплопроводность металлов
- •Работа выхода электрона из металла
- •Термо-эдс в металлах
- •Температурный коэффициент линейного расширения проводников
- •Требования, предъявляемые к проводниковым материалам
- •Различные типы проводников
- •Сверхпроводники и криопроводники
- •Полупроводниковые материалы
- •Классификация полупроводниковых материалов
- •Область применения полупроводников
- •Электропроводность полупроводников собственные и примесные полупроводники
- •Примеси замещения и примеси внедрения
- •Примеси замещения. Ковалентные структуры типа алмаза
- •Примеси замещения. Ковалентные полупроводниковые соединения
- •Примеси замещения. Полупроводники с ионными решетками
- •Примеси внедрения. Ковалентные структуры типа алмаза
- •Примеси внедрения. Ионные структуры
- •Воздействие внешних факторов на электропроводность полупроводников влияние тепловой энергии
- •Влияние деформации на электропроводность полупроводников
- •Воздействие света на электропроводность полупроводников
- •Влияние сильных электрических полей на электропроводность полупроводников
- •Полупроводниковые приборы терморезисторы
- •Полупроводниковые диоды
- •Транзисторы
- •Магнитные материалы Причины наличия магнитных свойств в материалах
- •Классификация веществ по магнитным свойствам
- •Основные показатели свойств магнитных материалов
- •Процесс намагничивания магнитных материалов
- •Основные виды магнитных потерь
- •Свойства и область применения технически чистого железа, а также листовых электротехнических сталей с разным содержанием кремния
- •Свойства и область применения сплавов со специальными свойствами (термокомпенсационные сплавы, сплавы для изготовления постоянных магнитов на основе металлов)
- •Сплавы на основе ферритов для изготовления постоянных магнитов, их достоинства и недостатки
- •Состав и область применения аустенитных и нержавеющих сталей в электротехнике
- •Состав и область применения конструкционных чугунов и сталей в электротехнике
- •Магнитодиэлектрики
- •Состав и область применения сплавов с высокой магнитострикцией
- •Технология изготовления ферритов
Основные показатели свойств магнитных материалов
Основным показателем свойств магнитных материалов является их относительная магнитная проницаемость, которая определяется выражением:
,
где В — магнитная индукция, Тл,
Н — напряженность магнитного поля, А/м,
μ0 — магнитная постоянная, равная 4π10-7 Гн/м.
Другим
важным показателем физических свойств
магнитных материалов является магнитная
восприимчивость
,
которая связана с относительной магнитной
проницаемостью выражением:
.
Важным показателем свойств является точка (температура) Кюри, при нагреве до которой магнитные материалы переходят в парамагнитное состояние.
Магнитное насыщение характеризуется индукцией насыщения Вmax. Часто она определяется как значение магнитной индукции, после которой при увеличении напряженности поля в 2 раза наблюдается прирост индукции не более 5%.
Остаточная индукция Вr — это магнитная индукция при нулевой напряженности магнитного поля после предшествующего намагничивания до индукции насыщения.
Коэрцитивная сила по магнитной индукции Hc — это напряженность магнитного поля, которая необходима, чтобы после предшествующего намагничивания до насыщения магнитная индукция упала до нуля.
Остаточная индукция и коэрцитивная сила определяются по предельной петле гистерезиса. Эти показатели свойств указываются как для магнитомягких, так и для магнитотвердых материалов.
Процесс намагничивания магнитных материалов
Магнитным гистерезисом называется явление отставания изменений намагниченности или магнитной индукции от вызывающих эти изменения изменений напряженности магнитного поля.
Рисунок 47 – Петля магнитного гистерезиса
Если начать намагничивать ненамагниченный образец магнитного материала, то при непрерывном возрастании напряженности магнитного поля H магнитная индукция образца В увеличивается, пока не достигнет значения индукции насыщения Bmax (рис. 47, участок 0-1). Если после этого уменьшать напряженность магнитного поля Н, индукция В уменьшится, но отдельным значениям Н при уменьшении будут соответствовать уже другие, большие значения В. Это означает, что кривые В=f(H) при увеличении и при уменьшении Н не тождественны. При уменьшении Н до нуля в образце остается остаточная индукция Вr. Если направление поля изменить на противоположное и начать его увеличивать, то при Н=-Hс индукция В уменьшится до нуля. В этом случае величина Hс называется коэрцитивной силой по индукции. При дальнейшем возрастании поля в обратном направлении образец будет намагничиваться в обратном направлении, пока при значении напряженности минус Нmax индукция не достигнет значения минус Bmax. При последующем уменьшении поля индукция снова будет уменьшаться, причем ее значения будут отличаться от соответствующих значений индукции при увеличении поля. При H=0 снова остается остаточная индукция минус Вr. Для ее исчезновения необходимо снова изменить направление поля и увеличить его до H=Hс. При дальнейшем увеличении Н до Hmax, значения B увеличатся до Bmax.
Кривая изменения индукции при изменении напряженности магнитного поля H от + Hmax до – Hmax и обратно называется предельной петлей магнитного гистерезиса. Она является важной характеристикой магнитного материала, так как на ее основе определяются важные показатели свойств материала - коэрцитивная сила Нс и остаточная индукция Вr.
Вследствие магнитного гистерезиса одному значению напряженности магнитного поля соответствует бесконечное множество значений намагниченности или магнитной индукции, которые зависят не только от напряженности магнитного поля, но и от предыстории намагничивания образца.
Если при циклическом перемагничивании значения Н не достигают Hmax, явление гистерезиса становится более сложным и в этом случае петля гистерезиса не всегда бывает замкнутой и симметричной. Для получения симметричной кривой обычно бывает необходимо около 10 циклов перемагничивания.
Явление магнитного гистерезиса в некоторых случаях является нежелательным, например, в магнитопроводах трансформаторов, так как оно вызывает большие потери. Во многих случаях, однако, они используется, например, в постоянных магнитах, в магнитных запоминающих устройствах и т. п.
Физической причиной явления магнитного гистерезиса является то, что доменная структура магнитного материала зависит от напряженности внешнего магнитного поля. Изменения в доменной структуре осуществляются путем перемещения доменных границ, что требует определенных энергии и времени. При циклическом перемагничивании перемещения доменных границ не успевают происходить одновременно с изменениями напряженности магнитного поля. Часть этих перемещений необратима, т.е. изменения остаются и после того, как напряженность магнитного поля исчезает. Это является причиной возникновения остаточной намагниченности.